
©Copyright 2021

Walter Cai

Novel Data Summaries for Join Query Optimization

Walter Cai

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2021

Reading Committee:

Dan Suciu, Chair

Magdalena Balazinska

Paul Beame

Program Authorized to Offer Degree:

Computer Science and Engineering

University of Washington

Abstract

Novel Data Summaries for Join Query Optimization

Walter Cai

Chair of the Supervisory Committee:
Professor Dan Suciu

The Paul G. Allen School for Computer Science and Engineering

As the demand for data intensive pipelines has grown and the diversity of settings has

expanded, generalizability of database management systems has suffered. The execution of

join queries, especially multi-join queries, remains one of the field’s greatest challenges. We

propose novel approaches to such queries using data sketching.

Traditional cost-based query optimizers have existed for decades, becoming the de facto

method for designing performant analytical systems. Nevertheless, these systems are still

hampered by the cost estimation stage. In particular, modern systems fall back on strong

assumptions about the underlying data when confronted with multijoin queries. In lieu of

chasing perfect estimates over multi table queries, we propose the application of theoretically

guaranteed cardinality upper bounds. These have the benefit that they force the optimizer

to act conservatively and deliver fewer high risk plans to the executor. We demonstrate that

the use of bounds leads to fewer disastrous plans than traditional cost estimation techniques

but is still on par with ‘easy’ queries where traditional query optimization techniques al-

ready perform well. We also preview how this technique may be generalized to large scale

distributed data scenarios.

Streaming query optimization introduces fresh challenges on top of post hoc analytic

pipelines. While queries are often semantically simpler, the introduction of temporal seman-

tics, required immediacy of output results, and less reliable hardware puts a strain on the

execution layer. In particular, the natural method of combining separate data streams –a

temporal join– places the onus of adapting to changing stream characteristics on an inte-

grated optimizer-executor. We propose a novel state management algorithm applicable to

the threshold-function-over-joins-scenario; a common setting in streaming data management.

We demonstrate significant state savings and prove that our method is optimal while still

guaranteeing no false positives; no threshold function triggers will be lost.

TABLE OF CONTENTS

Page

List of Figures . iii

List of Tables . v

Chapter 1: Introduction . 1

1.1 Research Contributions . 4

1.2 Thesis Organization . 12

Chapter 2: Background and Related Work . 14

2.1 The Traditional DBMS Query Workflow . 14

2.2 Joins . 16

2.3 Cardinality Estimation Methods . 18

2.4 Entropic Bounds . 27

2.5 Streaming Query Optimization . 30

Chapter 3: Tighter Cardinality Bounds . 38

3.1 Deploying Cardinality Bounds . 41

3.2 Evaluation . 56

3.3 Conclusion . 63

Chapter 4: Generalizing Cardinality Bounds . 66

4.1 Integrating Bounding into the Optimizer . 66

4.2 Distributed Fanout . 79

4.3 Adaptive Execution . 82

4.4 Conclusion . 85

Chapter 5: Threshold Functions over Stream Joins . 86

5.1 Method . 89

i

5.2 Generalization to Multijoins . 98

5.3 Certifying Quasiconvexity . 104

5.4 Evaluation . 105

Chapter 6: Conclusion and Future Directions . 113

Bibliography . 116

Appendix A: The AGM Bound . 130

Appendix B: Single Pass Algorithm to Compute Bound Sketch 133

Appendix C: Example of Non-Monotonicity of the Degree Bound 136

Appendix D: Googleplus Microbenchmark Template Examples 139

ii

LIST OF FIGURES

Figure Number Page

1.1 Example relations. 2

1.2 Left-deep join tree. 6

1.3 Simple stream join example. 11

2.1 Typical analytic query workflow in a DBMS. 15

2.2 Cross product of example . 16

2.3 Join as cross product and filter . 17

2.4 Traditonal cardinality estimation formula . 20

2.5 JOB query 08c. 29

2.6 Sliding join illustration . 32

2.7 Example quasiconvex function. 37

3.1 Chain jion valid join trees . 40

3.2 JOB query 08c join attribute graph. 46

3.3 Hash partition budgeting illustration . 50

3.4 Hypergraph post filter propagation . 52

3.5 JOB query 08c coverage combinations . 55

3.6 GooglePlus relative error graphs . 59

3.7 JOB runtimes graph . 60

3.8 JOB relative and Q-Error distributions . 65

4.1 Graphical subquery enumeration . 69

4.2 Misra-Gries sketch merge example . 81

5.1 Simple tuple omission depiction. 88

5.2 Visualization of constructive proof. 95

5.3 Mixed boundary counter example. 97

5.4 Multistream Query. 99

5.5 Omission policy applicability illustration . 100

iii

5.6 Near-clique join . 102

5.7 Tuple retention in the presence of time gaps . 110

5.8 Tuple omission performance when varying interval length. 110

B.1 Nested SQL query used to generate BS. 134

D.1 Template 4a, Googleplus Community 44 . 140

D.2 Template 5c, Googleplus Community 30 . 140

D.3 Template 5e, Googleplus Community 5 . 141

iv

LIST OF TABLES

Table Number Page

3.1 GooglePlus microbenchmark aggregate plan execution time 61

5.1 Stream processing times . 108

v

ACKNOWLEDGMENTS

While a doctorate is technically an individual degree, it is abundantly clear that this

dissertation is the product of a long line of people who have helped and supported

me on this path. To my advisors Dan Suciu and Magdalena Balazinska, I extend

the greatest gratitude. Your expertise and enthusiasm are undoubtably the driving

force behind our research and none of this would be possible if it weren’t for your

astounding patience. I would also like to acknowledge other professors/advisors from

the University of Washington and elsewhere who have been instrumental in my de-

velopment. Ravi Ramakrishna, Camil Muscalu, Keith Dennis, and Bob Strichartz for

guiding me through undergrad and lending me just a hair of mathematical maturity.

Bobby Kleinberg and Steve Wright for showing me the bridge between mathematics

and computer science; AnHai Doan and Jeff Naughton for mentoring me when I first

entered the database field; Philip Bernstein and Wentao Wu for broadening my view

to the streaming side of databases; Daniel Ting for introducing me to data sketch-

ing; and finally Paul Beame and Aleksandr Aravkin for being willing to sit on my

committee on short notice and still contribute insightful questions.

I was equally fortunate to be surrounded by an unparalleled collection of fellow

graduate students and postdocs both in the database group and outside. I hesitate

to list them all but I’m going to do my best. I will surely miss some names but please

don’t feel slighted; I’m very tired. Adam Elder, Adel Ardalan, Babak Salimi, Batya

Kenig, Brandon Haynes, Cong Yan, Dominik Moritz Dong He, Eunice Jun, Guna

Prasaad, Iain Carmichael, Jason Hoffman Jenny Ortiz, Jingjing Wang, Jonathan

Leang, Krishna Pillutla, Kyle Deeds, Laurel Orr, Maaz Ahmad, Maureen Daum,

vi

Max Schleich, Meghan Cowan, Moe Kayali, Morelle Arian, Parmita Mehta, Remy

Wang, Robert Baraldi, Ryan Maas, Shana Hutchinson, Shrainik Jain, Shumo Chu,

Srini Iyer, Tomer Kaftan, and Trevor Perrier.

There are of course others who were instrumental for me and I close by expressing

my gratitude to some of them. To the many paper reviewers who have assessed my

submissions, I’m so sorry, and also thank you. To Elise deGoede Dorough, without

whom the Allen school could not function. To Iain, we sold out together so hopefully

this pans out. To my parents and Elisabeth, for their unending postitivity, whether

or not I was in the mood. To Luna (a cat), she’s new but she’s pretty cool. And

finally to Anna, for her patience, strength, and kindness; I promise I’ll adopt more

regular sleeping patterns.

vii

DEDICATION

To Mama, Baba, Elisabeth, and Anna

viii

1

Chapter 1

INTRODUCTION

As more and more industries switch on to the idea of relying on data to drive their most

important decisions, data analytics has emerged as one of the most demanding and diverse

fields of computer science. These businesses require tools to address their ever growing,

ever more complex workloads. Database management systems (DBMS’s) have long been the

tool of choice for analyzing data, offering an elegant balance of expressivity, efficiency, and

general ease of use. Often one of the central requirements for a DBMS is to allow users to

combine different datasets. This combination creates richer datasets ready to be analyzed

by the user. We trust the DBMS to make smart decisions on how best to perform this

task. In particular, the user relies on the optimizer component of the DBMS to decide what

the precise order of operations should be to accomplish these combinations and to dictate

what information to store along the way. I.e., we trust the optimizer to come up with how

best to compute this efficiently. This is a significant responsibility: one plan may take days,

while another may take seconds. These challenges are often exacerbated by the specific

distributions, ordering, and available indexes of one dataset versus another or even the raw

form factors of the data. These challenges are well known and well studied, but despite

decades of research choosing and executing a good plan remains a fundamental bottleneck to

modern data analytics pipelines. As the magnitude and complexity of data analytics tasks

grows, the need to address this bottleneck is of utmost importance.

One of the most difficult operations for database systems to optimize and execute is a

join. A join operation combines two datasets together and is represented mathematically

with a & symbol. Generally, these datasets are tabular; lists of tuples where each tuple shares

some common structure and describes some instance of data. We refer to such datasets as

2

name id

walter 0
dan 1
magda 2
jeff bezos 3
archimedes 4
jay inslee 5

(a) Employee (E)

person id boss id

0 1
0 2
1 5
2 5
3 0
4 0
5 3

(b) Reports-To (RT)

person name boss name

walter dan
walter magda
dan jay inslee
magda jay inslee
jeff bezos walter
archimedes walter
jay inslee jeff bezos

(c) (E &p id RT) &b id E

Figure 1.1: Example relations.

tables or relations. We use these terms interchangeably. Note that the join of two relations

is another relation. The join predicate is the boolean condition on which two individual

tuples from different tables (or possibly the same table) are linked. If a pair of tuples from

two input relations satisfies the join predicate, their concatenation will appear in the join

output [124].

To illustrate a join, we include Figure 1.1 which contains a simple example describing

a company’s employees along with the company’s reporting structure. The figure contains

two base relations; Table 1.1a associates an employee’s name with their ID, and Table 1.1b

associates an employee’s ID with the ID of someone whom they report to. Base relations

are stored explicitly by the DBMS and are used as the inputs to joins. Queries generally

reference base relations directly. Consider the following query: we wish to generate the set of

name pairs between employees and their managers. The DBMS must combine the relations

in a chaining structure. The DBMS can start by joining the id column in the employee table

with person id in the reports-to table. This produces an intermediate relation or product.

The DBMS may then continue by joining the boss id column from the intermediate relation

again with the id column in the employee table. In this example, the join predicates are

equivalence predicates on the different id columns. After projecting to only names (dropping

the now superfluous id columns), the desired name pairs can be found in Table 1.1c. Note that

3

this query involved more than two relations. This is an example of a multijoin. Multijoins

will be a heavy emphasis of this dissertation.

As in the above example, joins are generally chained together, one relation at a time.

Importantly, the optimizer is free to choose the order in which relations are included in

growing intermediate relations. While the above example is straightforward (there are really

only two choices for join orders), joining relations in a poor order can lead to unacceptable

wait times for results [91, 97]. Ideally, the optimizer will avoid poor orders. However, the

optimizer can be tripped up and pick a poor order when the join structure or underlying

data becomes more complex. How can we address these challenges? In this work we propose

the use of sophisticated data sketching techniques addressing key problems that arise in the

presence of joins.

We place particular emphasis on two specific areas. The first is cardinality estimation

in traditional static analytical query optimization [64, 91]. Cardinality estimation is the

subtask of estimating the number of rows of some join output. Deviating from the norm,

we do not target “accurate” estimates but instead target theoretically guaranteed upper

bounds for intermediate join cardinalities. In particular we demonstrate how to improve

existing bounding techniques, making them more practical. In this sense, our contributions

may be viewed as practical and mathematically driven modifications to the traditional query

optimizer structure. While we defer a more detailed description of the traditional DBMS to

Chapter 2, we preview our primary research contributions below.

The second area that we target is streaming joins. Streaming data refers to data that

arrives live to the database versus static data that the DBMS has full access to when the

query is placed [1, 46, 55]. Since the system cannot control when data arrives, joins are

often executed using approximate predicates. An example of approximate predicates is the

interval join where two tuples join if the difference between their timestamps is less than

some δ instead of exactly equal. Querying streaming data generates a whole new class of

challenges over its static counterpart. We focus on query execution state management; the

handling of metadata during query execution. We provide an algorithm for state reduction

4

in common streaming scenarios and go on to prove that our algorithm is optimal.

1.1 Research Contributions

In this section we categorize and preview the key contributions in our research. As stated

earlier, these contributions approximately fall under two general areas. The first is the

classical cardinality estimation sub-task that characterizes static data analytics and is the key

problem during analytic query optimization. The second addresses join runtime execution

optimization in the streaming data scenario.

1.1.1 Cardinality Estimation and Bounds

The first area of emphasis is rooted in traditional SQL analytical workloads where we target

the problem of cardinality estimation in multijoin queries. Cardinality estimation refers to

the problem of estimating the size of join relations. In the earlier example this might refer

to the size of a two table subquery such as

Employee & Reports-To

or even the size of the final product

Employee & Reports-To & Employee

While this may seem trivial for smaller queries, the number of subqueries that must be

estimated grows exponentially with the number of relations in the join. This is due to an

exponential number of distinct subsets of the set of all base relations. While in most cases not

every possible subset (subquery) must be estimated, generally the number subsets that do

require estimation still grows exponentially. Although the explicit enumeration of subqueries

is not challenging, the exponential factor forces the optimizer to produce each cardinality

estimate relatively quickly. Thus, when we claim that cardinality estimation is challenging,

5

the true challenge lies in being able to do so fast. The time constraint makes estimating the

interaction between base relations very difficult; there simply isn’t enough time to track all

the intertwining and compounding interactions found in complex multijoin queries. Since

the interaction of joining relations is purely based on their attribute value distributions (the

frequencies with which different values appear in their joining columns) the problem can be

re-framed as the concise encoding of attribute value distributions [88]. In particular, we need

to keep track of correlation and skew.

Skew occurs when values in a joining attribute occur with disproportionate frequencies.

For example, the string Walter Cai might only appear in a handful of tweets while Barack

Obama will occur in billions. In this scenario we say Obama is a skewed value and we often

describe distributions that contain attribute values that display this behavior as skewed.

We also use the descriptors frequent and heavy interchangeably with skewed. Correlation

piggybacks on top of skewed attribute value distributions. Suppose there is an accompanying

dataset of Facebook posts which again are affiliated with the person they mention. Again,

Obama will appear far more often than Cai. Were we to join the two relations, the skewed

values will often coincide. As this example demonstrates, the nature of real world data is

that skewed values in one relation are more likely to be skewed in the other relation as well.

More technically, we say the two datasets’ attribute value distributions are correlated. The

challenge of accurately tracking correlation and skew across the join columns of multiple base

relations makes achieving precise estimates for even a single subquery very difficult, not to

mention for millions of sibling subqueries.

This tracking is made more difficult by filter predicates. Operators that restrict which

tuples from a relation may be considered in some query. For example, in the above example,

the user may specify that they only wish to consider tuples including cai in the Facebook

dataset. This drastically changes the distribution of the data and can contribute to greater

innacuracy during cardinality estimation.

Consider how the errors from not properly handling skew and correlation might affect an

6

&

1/2n−1

⋰

&

1/22
Rn

&

1/21

R3

R1 R2

Figure 1.2: Left-deep join tree.

optimizer’s cardinality estimate. Take the following n-table chain join.

R1 &R2 &R3 &⋯ &Rn (1.1)

For simplicity, consider one join ordering where relations are joined into the growing inter-

mediate product from left to right.

(((R1 &R2)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
intermediate

product

&R3)

´¹¹¸¹¹¹¶
intermediate

product

&⋯) &Rn

This is often referred to as a deep tree. Although joins are logically commutative (A&B is the

same as B &A) physical join algorithms often require that one relation is the inner relation

and one relation is the outer relation. The join output is equivalent but the ordering in the

binary operator still matters. If the intermediate product is the outer relation in each join

operation, this is further an example of a left-deep join tree. The tree structure is evident

from the illustration in Figure 1.2.

What is often observed is that modern cardinality estimation formulas underestimate

7

join size. Suppose that this occurs at each successive step in the chain join above and

that each join underestimates by a factor of 2. Since each join is estimated based on the

size/size estimates of its inputs, underestimation from a subquery will affect the accuracy

of cardinality estimates higher up the join tree. This manifests as underestimation that

compounds with each successive join. Thus, error is worse higher up the join tree and the

final product will be underestimated by a factor of

2 × 2 ×⋯ × 2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(n−1)−many

= 2n−1

where n is the number of relations in the join. Figure 1.2 illustrates this error in red above

each join operator. This error can be worsened by filter predicates which drastically change

the profile of a relation and render most table level statistics unrepresentative and/or insuffi-

ciently detailed. We will argue that underestimation is the riskier of underestimation versus

overestimation and develop methods to address this.

Current state of the art cardinality estimation algorithms can generally be fit within a

trade-off space between latency and accuracy. That is, the amount of time it takes to generate

a cardinality estimate versus the accuracy of the result. This is not a surprising trade-off

as more time to process data would logically lead to a more accurate estimate. At one end

of the spectrum, traditional cardinality estimation methods such as histograms and strong

assumptions prioritize latency but can lead to disastrous results in the presence of correlated

and skewed data [124, 119, 110]. Next, static sampling methods lead to provably unbiased

estimators although they are significantly slower than traditional methods and break when

the static sample fails to capture sufficient base relation tuples to represent the filter and

join predicates [36, 40, 115]. At the far end of the spectrum is dynamic sampling. Dynamic

sampling methods are less brittle than their static counterparts but incur massive latency

as well as often restrict the space of join orderings [94, 95]. The newest trend in cardinality

estimation is to use machine learning models to assist with the estimation task [88, 87, 101].

However, these methods have yet to be shown to be generalizable and are exceedingly difficult

8

to debug.

All above methods are designed to generate accurate and unbiased estimates on a per-

query basis. In contrast, we take a holistic view of a workload of several queries. We observe

that in many instances it is a minority of very slow queries that constitute the majority

of poor workload performance. From a statistical standpoint the distribution of workload

query runtimes has a long tail consisting of slow queries. These tail end queries are often

bogged down by massively underestimated intermediate products [91]. This underestimation

leads the optimizer to choosing aggressive plans forcing the DBMS to process these large

intermediate products. We target these heavy tail queries by pivoting away from accuracy

as a metric for success and instead towards safety. We propose replacing estimates with

sufficiently tight provable upper bounds [18]. In this manner we avoid the heavy tail and

remain on par with the majority of queries that traditional cardinality estimation already

succeeds in finding an efficient plan for.

In order to achieve this result, we demonstrate the first practical implementation and

integration of entropic bounds into a modern database management system; Postgres [122,

26]. Entropic bounds are a class of existing cardinality bounding formulas. We describe

entropic bounds more thoroughly in Chapter 2. This initial implementation builds on the

concepts of entropic bounds by combining the worst case optimal performance inherent to

entropic bounds with more fine-grained data sketches for the underlying data. While our

method again explores the same trade-off space between cardinality estimation latency and

accuracy, it limits the risk of poor estimates leading to disastrous plans. The result is a

theoretically strong foundation that partially bypasses cardinality estimation; arguably the

hardest problem in query optimization.

We continue this line of research by previewing the incorporation of the cardinality bound

principle in a modern big data management system: spark. Big data management systems

(and distributed DBMS’s) differ from traditional local single node systems in that they are

predicated on the collective data processing power of a flexible fleet of commodity hard-

ware [148, 47, 143]. While this infrastructure allows for fluid scaling and the ability to

9

process vast quantities of data in parallel, the distributed setting introduces new challenges

to the cardinality estimation process and hence joins remain a bottleneck. In particular, the

need to reshuffle data between many data operators places a higher priority on robust query

plans and join orders. While bounds can serve to mitigate these risks and ensure more robust

plans, the distributed setting poses additional challenges for the collection and maintenance

of the data sketches necessary to calculating cardinality bounds. We address these issues

and demonstrate the practicality of our solutions.

Our key contributions in the area of static multijoin query cardinality estimation are

enumerated below. These contributions comprise and extend our SIGMOD 2019 publication

[26].

• We develop pessimistic cardinality estimation: a framework for improving entropic

bounds via finer grained statistics.

• We provide a prototype implementation of the pessimistic cardinality estimation frame-

work.

• We demonstrate the practicality of our approach based on challenging real world data.

• We preview a framework for the generalization of pessimistic cardinality estimation

approach that addresses key challenges in scaling our approach.

1.1.2 Stream Query Optimization

The second area of focus for this thesis is stream join execution. Data Stream Management

Systems (DSMS’s) are the tool of choice to wrangle streaming data rather than traditional

DBMS’s which are predicated on static relations [105, 10, 55, 39, 28, 7, 150]. One can argue

that DSMS’s are just specialized versions of DBMS’s that are predicated on the idea of

streaming tuples rather than static relations. However, this form factor introduces another

layer of complexity over traditional SQL engines. The requirements are significant enough

10

that we treat them as a separate architecture in this dissertation. In particular, query

output must be able to reflect changes based on these new tuples streaming in. Thus, in

the streaming scenario, queries no longer have fixed final answers. These are often refered

to as standing or continuous queries[39, 33]. Instead, the lifetime of a query can be infinite,

depending only on the existence of new stream tuples. Practical scenarios that illustrate the

streaming space include the constant accumulation and analysis of computing log files or

data from Internet of Things (IoT) devices such as phones, cars, or traffic cameras.

In focusing on stream joins we shift away from query optimization that occurs ahead of

query execution and instead explore optimal state management during execution. Again,

state consists of the data/metadata that needs to be maintained by certain operators during

execution. While some operators are stateless such as the filters that may be applied on

a per tuple basis and that need not worry about remembering data dependent information

during execution, stateful operators must store some data-dependent information. A simple

example of a stateful operator is a summation. The summation operator must keep a running

sum while iterating over tuples. A more complex example is a symmetric hash join where

hash tables on both relations are built in parallel. Tuples from each relations are used to

probe the neighbor’s hash table and then inserted into their own relation’s hash table. In

this way the join algorithm guarantees that no join outputs are missed. In this scenario, both

hash tables may be considered state associated with the symmetric hash join operator. The

presence of such stateful operators is particularly tricky during the execution of streaming

joins. As such, join state management becomes a bottleneck, especially when resources are

scarce.

A natural extension of streaming query workloads is the temporal join. A temporal join

is semantically equivalent to a standard join but operates on a special timestamp attribute

that is packaged with every streaming tuple. For example, given two streams R and S, tuple

r ∈ R joins with tuple s ∈ S if their associated timestamps are within some length of time

ω/2 from one another. This is in contrast to the standard equijoin where tuples join if their

joining column values are equal. Thus the difference comes down to precise nature of the

11

Figure 1.3: Simple stream join example.

join predicate. An illustration of the above query is included in Figure 1.3. Note that both

r and s project symmetric and semantically equivalent windows onto S and R respectively.

Any prospective join partner must live inside the associated window.

Often, these streams are transmitted over unreliable network and with variable latency.

This is particularly common in edge computing and IoT scenarios where the edge device is a

rudimentary sensor or has spotty connection to the central processor node in the system [126].

Whether due to variable latency or outright network failure, the system is forced to cache

results from the faster or more reliable network and wait for the corresponding tuples from

the unreliable stream. If a system lacks sufficient resources to handle this caching then the

system will either fail or be forced to drop tuples.

We explore one scenario where omitting tuples is highly beneficial. Often, the system is

tasked with applying a threshold function over the output of these stream joins [128, 99].

An alarm is triggered if a join tuple exceeds the threshold value.

Consider the example of a manufacturing facility with several machines. If condensation

forms on the surface of the machines, it is likely that the product will be tainted or that the

machines will begin to corrode. In order to avoid this problem, the plant supervisor is tasked

with keeping the machines dry. The supervisor can employ an array of sensors that measure

three statistics about the facility environment: air temperature, surface temperature, and

12

relative humidity. These sensors stream readings on an IoT network to a rudimentary central

processing node that will raise an alarm if it detects the possibility of condensation forming

on the surface of one or more machines. That is, if some threshold function that takes the

sensor readings as input crosses some threshold. Depending on the sophistication of the

sensors, network, and central processing node the above system may break down and cause

a catastrophic cache overflow. This may result in manufacturing delays, wasted materials,

and damaged manufacturing equipment.

In order to combat such a scenario, we design an efficient state reduction algorithm and

complimentary data sketch that is applicable to a broad collection of threshold functions. In

particular, we develop an optimal omission policy for quasiconvex threshold functions where

the state savings performance is agnostic of true throughput except in very low throughput

situations. Instead, it depends only on the join interval size. We prove that our omission

policy is optimal while guaranteeing equivalent alarm behavior sans tuple omission; no false

positives, and no false negatives. Furthermore, we demonstrate how to generalize the omis-

sion policy to more complex multi-stream joins based on join topology as well as address

tangential challenges in applying our omission policy [27].

Our key contributions in the area of stream join query optimization first appeared at

VLDB 2021 and are as follows [27]:

• We develop an algorithm for theoretically optimal state reduction in the case of thresh-

old functions over streaming joins.

• We generalize our technique to multi-stream joins.

• We run experiments that validate the technique’s substantial state savings.

1.2 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 is a background chapter.

We review the architecture of typical DBMS’s and go on to discuss the current state of the

13

art in modern cardinality estimation including a review of the mathematical background to

our cardinality bounds. We continue by covering the fundamentals of stream join semantics

and how systems built for streams differ from traditional DBMS’s. In Chapter 3 we describe

our novel bounding technique as well as preview the results from our prototype local DBMS

implementation incorporating bounds. In chapter 4 we generalizing our cardinality bounds to

the distributed setting and discuss the new challenges that arise in this scenario. In Chapter

5 we change gear and present our optimal streaming state management policy. Finally, we

conclude in Chapter 6.

14

Chapter 2

BACKGROUND AND RELATED WORK

In this chapter we will preview the current state of the art in query optimization, focusing

on the areas that constitute our major contributions. We begin with a preview of the

traditional declarative query optimization workflow. We place particular emphasis on the

cardinality estimation subtask, characterizing it as a linchpin and discuss the strengths, and

weaknesses of current state of the art techniques. We also discuss entropic bounds as they

represent the foundation of the pessimistic cardinality bounding framework. We then branch

into stream query optimization placing emphasis on new constraints and priorities placed on

streaming systems as versus traditional analytic systems or even transactional systems.

2.1 The Traditional DBMS Query Workflow

As data becomes a more and more vital building block of everyday decisions, the need for

scalable, efficient, and easy to use data processing systems grows as well. The traditional

analytic query processor has been developed for decades, starting with hierarchical systems

such as IBM’s IMS, then network models such as CODASYL, and finally to the more familiar

Relational model [42] that has stabilized as the standard [66].

Although the idea of records and tables didn’t differ significantly between these founda-

tional data models, the relational model pushed new ideas that have become the bedrock

of modern analytical systems. In particular, the relational model emphasized a declarative

querying interface that took the responsibility of optimizing queries out of the hands of ap-

plication developers [98]. Not only did this open the door for advances in automated query

optimization, it made DBMS’s more usable to non-expert users.

We describe the general query processing system as composed of 3 primary components;

15

SQL Parser Logical Plan Optimizer Physical
Plan Executor

stats

SELECT …
FROM …
WHERE …

data

Figure 2.1: Typical analytic query workflow in a DBMS.

the Parser, Optimizer, and Executor. While the borders that separate these components

are certainly blurry from one system to the next, the overall workflow is as follows. The

system accepts a declarative query (e.g. SQL) and parses it to create a base logical plan; a

mathematical structure that describes all the logical components of the desired query. The

logical plan is fed to the optimizer which (as the name would suggest) optimizes it. That

is, the optimizer transforms this logical plan into a physical plan; an actual algorithm that

achieves the desired output as encoded by the logical plan. In particular, the optimizer

decides on a join order; the order in which base/intermediate relations are joined together

to produce the final output. A well-known approach, pioneered by the System R project,

selects the optimal order using dynamic programming [127]. The optimizer starts by building

an “optimal” plan for all two table subqueries. It then constructs what is an optimal plan

for all three table subqueries built on top of the different plans that already exist for two

table subqueries. Then four table subquery plans are built on top of the two and three table

plans and so on. At the end, there will be a single plan for the desired n-table query that

is provably optimal given the assumptions made by the optimizer along the way are true.

These assumptions are the stumbling block that we seek to fix. Finally, the physical plan is

performed by the executor which routes the resulting data to the user. Figure 2.1 illustrates

this typical analytic query workflow.

For now we focus on the optimization layer. In later sections we will shift partial focus

16

name id

walter 0
dan 1
magda 2
jeff bezos 3
archimedes 4
jay inslee 5

(a) Employee Table

person id boss id

0 1
0 2
1 5
2 5
3 0
4 0
5 3

(b) Reports-To Table

Figure 2.2: Cross product of example base relations from Figure 1.1.

to the execution layer as the rolls of optimization and execution become more intertwined in

the context of streaming data. In particular, we are interested in how the optimizer handles

joins.

2.2 Joins

Recall from Chapter 1 that joins are fundamentally the act of linking tuples from different

data sources. We now give joins a more formal treatment. A join operator takes three inputs,

a left relation R, a right relation S, and a join condition. Semantically, a join is equivalent

to a filter predicate applied to the cross product of the two relations. Take the two base

relations given in Figure 1.1: Employee, and Reports-To. For convenience, we reproduce

these tables in Figures 2.2a and 2.2b. Their cross product is a relation with four columns

(the union of the two pairs of columns from the base relations) and would contain 42 rows:

One for each pair of rows; one from the Employee and one from Reports-To.

∣Employee ×Reports-To∣ = ∣Employee∣ ⋅ ∣Reports-To∣ = 6 ⋅ 7 = 42

The cross product is displayed in Figure 2.3a. The join condition then reduces this cross

product to only those rows that satisfy that condition. Equijoins are the most common join

17

E name E id RT pid RT bid

walter 0 0 1
walter 0 0 2
walter 0 1 5
walter 0 2 5
walter 0 3 0
walter 0 4 0
walter 0 5 3
dan 1 0 1
dan 1 0 2
⋮ ⋮ ⋮ ⋮

jay inslee 5 4 0
jay inslee 5 5 3

(a) Employee ×Reports-To

E name E id RT pid RT bid

walter 0 0 1
walter 0 0 2
dan 1 1 5
magda 2 2 5
jeff bezos 3 3 0
archimedes 4 4 0
jay inslee 5 5 3

(b) σE id=RT pid(Employee ×Reports-To)
≡ Employee &E id=RT pid Reports-To

Figure 2.3: Joins are semantically equivalent to the composition of a cross product and filter
predicate

predicate: a cross product tuple survives filtering only if a pair of columns share the same

value. In the example above, the most logical join condition would be that columns E id

(the id column from the Employee relation) and RT pid (the person id column from the

Reports-To relation) are equal. The result is shown in figure 2.3b

Thus the join

(Employee) &Employee.id=Reports-To.person id (Reports-To)

is semantically equivalent to

σE id=RT pid(Employee ×Reports-To)

From an algorithmic standpoint, executing a cross product first and then filtering is a highly

inefficient procedure in almost all cases. Instead we will combine the two operators to execute

18

them simultaneously. Algorithms that implement this behavior are physical join algorithms

such as nest-loop, hash, and merge joins [124]. However, the ability to reduce a join to

general filter and cross product operators is important, since instances of both operators are

commutative (provided the filter operates on columns that are present; one cannot apply a

filter before a necessary column appears). The net result is that joins are also commutative.

Thus, if one defines a multijoin (a join with greater than two base relations), the order

in which one incorporates new relations into intermediate relations doesn’t matter; we can

execute joins in whatever order we wish and the end result will be equivalent. This is

powerful in that it provides an exponential number of join orders from which to choose from

but problematic in that we must avoid poor join orderings.

While direct multijoin algorithms (algorithms that ingest multiple relations at a time)

exist [140, 41, 114], most systems are built on the binary join paradigm. That is, most join

algorithms consume two relations at a time. When a query involves greater than two rela-

tions, this necessitates the processing of intermediate products relations. These intermediate

products are logical relations and each tuple that they contain must be processed during

query execution. Moreover, different join orders will feature different intermediate relations.

For this reason, the size of these intermediate relations is a key factor in the performance of

one join ordering over another.

We now arrive at the subtask of cardinality estimation; the problem of estimating how

large these intermediate relations will be. This problem has long plagued DBMS designers

and we review the current state of the art in the following Section.

2.3 Cardinality Estimation Methods

Consider two relations R and S with sizes ∣R∣ and ∣S∣. Let the domain of the joining columns

in each relation be D and let Rx be the set of tuples in R that take value x. Similarly for

Sx. Define the value distributions for R and S to be {rx}x∈D and {sx}x∈D respectively. That

is rx = ∣Rx∣ and sx = ∣Sx∣. For any relation, we call the subset of the domain which actually

19

appears in the relation to be the active domain. More formally, the active domain of R is

{x ∶ rx > 0} ⊆D

For now we restrict our view to the equijoin case. The size of the join in this scenario is as

follows;

∣R &x S∣ = ∑
x∈D

rx ⋅ sx

The objective of cardinality estimation is to return an accurate estimator for this sum.

2.3.1 Classical Cardinality Estimation

Traditional optimizers rely on strong assumptions about the underlying data [141, 122]. In

particular, optimizers –absent of other statistics– have assumed that attribute value distri-

butions are uniform. I.e., that all attribute values within a relation appear with the same

frequency. Given the common distinct values statistic, these systems may construct a simpe

formula for cardinality estimates. For example, given two relations R and S with sizes ∣R∣

and ∣S∣ and distinct value counts dvR = ∣{x ∶ rx ≠ 0}∣ and dvS = ∣{x ∶ sx ≠ 0}∣, the estimated

cardinality of R & S is as follows [124]:

∣R∣∣S∣

max (dvR, dvS)
(2.1)

Note that the distinct value statistic is the size of the active domain. The explanation for

why this formula fails when confronted with skewed and correlated data can be gleaned from

a simple rewrite:

∣R∣∣S∣

max (dvR, dvS)
=

∣R∣

dvR

∣S∣

dvS
min (dvR, dvS) (2.2)

20

Figure 2.4: Traditional cardinality estimation relies on strong assumptions about the under-
lying data.

The first two terms assume that the the join columns are uniformly distributed. That is,

for any attribute value x ∈ D that appears in R (S), we assume rx = ∣R∣/dvR (sx = ∣S∣/dvS).

Under this assumption, if value x appears in both R and S, then the set tuples in R&S that

are the result of joining on value x will be the cross product of Rx and Sx:

∣Rx & Sx∣ = ∣Rx × Sx∣ = rxsx =
∣R∣

dvR

∣S∣

dvS

Finally, the optimizer assumes that the smaller of the distinct value sets derived from R,

and the distinct value sets derived from S, is a subset of the larger. Each value x in the

smaller active domain will contribute a total of ∣R∣∣S∣/dvRdvS tuples to the join output.

This produces the factor of min (dvR, dvS) appearing as the third multiplicative term in the

righthand side of Equation 2.2. These assumptions are depicted in Figure 2.4.

While the assumption of maximal overlap between active domains should push the esti-

mate higher, the uniformity and independence assumption is a best case scenario assumption

and should push the estimate lower. As is with most things, two wrongs do not make a right

and these assumptions do not cancel each other out. While the active domain overlap as-

sumption often holds true, or at least close to true, the uniformity assumption often breaks.

This leads to massive underestimation which compounds with every subsequent join in a

multijoin query.

21

Underestimation from the uniformity model is worsed by a secondary assumption often

made my optimizers; independence. Independence assumes that filters predicates across the

same and different relations are independent (aka uncorrelated). The way this manifests

in cardinality estimation formula is that the selectivity of the conjunction of two filters is

assumed to be the product of the selectivities of each of the filters independently:

∣σx=a(R) &z σy=b(S)∣ = selectivityx=a,y=b ⋅ ∣R &z S∣ ≈ selectivityx=a ⋅ selectivityy=b ⋅ ∣R &z S∣

Real world data and workloads generally break this assumption since pairs of filter predicates

are often written to capture related attribute values. The product of each filters’ selectivity

thus underestimates the selectivity of the conjunction of the filters thus leading to further

underestimation.

The upside to this estimation method is that it is exceedingly fast in delivering estimates,

leading to a very short optimization time. However, systematic underestimation leads to

more aggressive query plans; plans that are marginally faster if the relations adhere to the

above idealistic assumptions but which can lead to disastrous execution times when the size

of intermediate relations blows up.

2.3.2 Sampling based Methods

The above formulas lead to fundamentally biased estimators. Researchers have instead

pivoted to achieve unbiasedness. Sampling for cardinality estimation is attractive since it

inherently handles all single relation filter predicates while also delivering unbiased estimates.

A significant portion of recent work on cardinality estimation focuses on the generalization

and optimization of sampling methods [92, 40, 141, 78, 50]. We describe some of the more

important variations below.

Static uniform Bernoulli sampling has existed for decades in database systems offering a

per-table precomputed sample. Let R(x, y) and T (y, z) be two relations with precomputed

samples SR(x, y) and ST (y, z). If an optimizer needs an estimate for a simple join: R(x, y)&

22

T (y, z), we may use SR and ST to produce an unbiased estimate:

∣R(x, y) & T (y, z)∣ ≈ ∣SR(x, y) & ST (y, z)∣ ⋅
∣R∣

∣SR∣
⋅
∣T ∣

∣ST ∣

This approach can be generalized to queries with arbitrary number of relations and join

predicates between them:

∣ &
j∈[m]

Rj∣ ≈ ∣ &
j∈[m]
SRj

∣ ⋅ ∏
j∈[m]

∣Rj ∣

∣SRj
∣

(2.3)

However, in practice this method suffers in the presence of highly selective filters, or many

tables appearing in the join. In the case of highly selective filters, the precomputed uniform

samples might not have sufficient size (possibly size zero following filter application) and

won’t be able to capture the true selectivity. In the case of many tables, it is likely that uni-

form samples won’t have sufficient intersection and might lead to empty sample-joins. This

is the primary drawback of Bernoulli sampling where independent sampling from different

tables often yields near empty or empty joins of the samples.

Correlated sampling first proposed by Vengerov et al. [141] is a clever twist for generating

samples from multiple tables which successfully join. Consider the same running example:

we wish to estimate the cardinality of R(x, y) & T (y, z). We fix some sampling probability

threshold p and random hash function h mapping the domain of the join attribute to [0,1]

and define sample sets SR, and ST as follows:

SR = {r ∈ R ∶ h(r[y]) < p}

ST = {t ∈ T ∶ h(t[y]) < p}

Note that for relations with multiple join attributes, it suffices to use one hash function per

join attribute. Furthermore, the sample for such a relation will be dependent on all join

23

attributes present in that relation:

SR = {r ∈ R ∶ (hy(r[y]) < p) ∧ (hz(r[z]) < p) } (2.4)

We call this conjunctive inclusion. Because we hold the hash function h constant over the

two relations, the samples are correlated and Equation 2.3 would generate a biased estimator.

We may unbias the sample join as follows:

∣R & T ∣ ≈ ∣SR & ST ∣ ⋅ (P (r & t ∈ SR & ST))
−1

= ∣SR & ST ∣ ⋅ (P(r ∈ SR ∧ t ∈ ST))
−1

= ∣SR & ST ∣ ⋅ p
−1

Generalizing to multijoin tables: let the join &j∈[m]Rj feature n join variables. In the case of

a simple chain join, we may write n =m− 1. In the general case our bounding formula have:

∣ &
j∈[m]

Rj ∣ ≈ ∣ &
j∈[m]

SRj
∣ ⋅ p−n

Correlated Sampling addresses the shortcomings of Bernoulli sampling and performs better

on relations with larger active domains but instead suffers when datasets are very skewed,

in which case the static sample size can be far too large or alternatively far too small. Both

options are poor. Overly large sample sizes defeats the purpose of optimization as one will

be performing too much of the query ahead of the execution phase. Overly small sample

sizes fail to provide sufficient signal to generate a decent execution plan.

A variant of correlated sampling is designed to handle the problem that tuples from tables

with multiple join columns would need to satisfy the hash value threshold for all columns

independently of one another. This conjunctive inclusion policy (defined in Equation 2.4)

makes it difficult to tune the threshold parameter p across tables since tables with multiple

join attributes might yield overly sparse samples, while tables with fewer join attributes

24

produce samples that are too large. As a solution, it is instead possible to use a disjunctive

policy: a tuple is included in the sample if any one of the multiple join columns is included

in the sample.

SR = {r ∈ R ∶ (hy(r[y]) < p) ∨ (hz(r[z]) < p) } (2.5)

For small values of p, this makes the sampling rate approximately equal to J ⋅ p where J

is the number of join variables present in a relation. Thus, the constant factor growth is

more easily tuned ahead of time than exponential shrinkage in the conjunctive case. This

is particularly attractive where different queries in a workload join on different subsets of

attributes. The same static sample can be used in all queries, as the join columns in different

tables will be sampled in a correlated fashion and the sample sizes correspond linearly to

the sample rate rather than exponentially. However, this variant also makes debiasing the

estimate more complex. Let Jj be the number join variables appearing in relation Rj:

∣ &
j∈[m]

Rm∣ ≈ ∣ &
j∈[m]

SRj
∣ ⋅ ∏

j∈[m]
1 − (1 − p)Jj

We further note that the threshold probability p need not be held constant across the entire

query and can instead be independently set for each join attribute.

Two level join sampling is an approach proposed by Chen et al [40]. The authors catego-

rize the strength and benefits of Bernoulli and Correlated sampling algorithms and seek to

combine them with a single “2-level” sampling algorithm. The authors claim that correlated

sampling is powerful for capturing correlation between joining columns in separate tables,

whereas Bernoulli sampling is useful for capturing correlation between columns within the

same table. Correlated and Bernoulli sampling correspond naturally to levels 1 and 2, respec-

tively, in this sample structure. Given level-1 sampling probability p1, and level-2 sampling

probability p2, Chen et al. describe a per-table single pass algorithm where the end result will

be a sample set with the following characteristics. For any join value v, there is probability

25

p1 that tuples with join value v will be included in the sample. If tuples with join value

v are included, then there will be a single “sentry” tuple drawn uniformly from all tuples

including v. All other such tuples will be included with probability p2.

The weakness with static sampling is failure in the face of highly selective filter predicates.

If no tuple in a sample satisfies the filter, then only an estimate of zero will be produced.

Index based join sampling, introduced by Leis et. al. [92], seeks to combat the sparse sample

problem by replacing the precomputed samples with an iterative process that leverages ex-

isting indexes on the full relations to build new samples for intermediate relations at runtime

similar to Wander Join [94]. Specifically, they start with a uniform sample from some base

relation in the query and iteratively build outwards along join predicates. In this manner,

the method may generate a set of samples for each necessary intermediate result. The al-

gorithm is recursive and ingests some sample S from an intermediate join or base relation

T . The algorithm also ingests a base relation A to be logically joined in to T and which has

a precomputed index. The output is a sample S ′ from the join T &A. Sample tuples in S ′

are generated by using tuples from S to probe the index on A, returning tuples that will

successfully appear in T &A. In order to avoid blowup or starvation inside the intermediate

join samples, the authors describe a budgeting and doubling back scheme which is designed

to maintain a relatively constant sample size as more tables are logically included. While

these dynamic sampling schemes are more robust to diverse workloads than static sampling,

the tradeoff is that optimization time takes significantly longer.

Improved selectivity estimation [109] combines data sketching (referred to as data syn-

opses in the text), and sampling based methods to improve cardinality estimation. However,

the authors do not extend their methodology to include joins of any kind but instead focus

only on multiple filters on a single relation.

2.3.3 Robust Query Optimization

Robust query optimization and bounded query execution is an area focusing not necessarily

on picking the fastest plan, but instead places greater value on avoiding poor plans, even

26

at the cost of slightly suboptimal planning and execution time [13]. Babcock et al. propose

generating a probability distribution view of a cardinality estimate. The authors allow users

to submit a confidence threshold at runtime at which point the query optimizer combines the

threshold and cardinality estimate distribution to return a cardinality point estimate with

varying aggressiveness [21]. In the context of query re-optimization, Babu et al. propose a

confidence interval view of the cardinality estimates, which reduces the need for later query

re-optimization [23].

2.3.4 Machine Learning based Optimization

The newest trend in query optimization replaces one or several components in an optimizer

with Machine Learning (ML) models. The most directly comparable method converts the

cardinality estimation functionality with a regressor [82, 83]. As with most ML applications,

the greatest challenges come from training. Because of the diversity of datasets, training on

one dataset will likely not lead to an optimizer that can easily be deployed on a different

dataset or even different workload on the same dataset. For this reason, ML models that

explicitly target cardinality or selectivity will often need to be generated on a per-dataset

level at least partially. If a model trains directly on a dataset, one can argue that the model

is simply learning the attribute value distributions of the underlying data. An additional

signal source is past queries (real or synthetic). This optimizer-execution feedback loop was

introduced in the 1990’s [2, 3] and was popularized by Stillger et al. in their work on IBM’s

DB2 [131]. Wu et al. rely on past queries in the workload to tune estimates, leveraging the

fact that common subqueries are often repeated in production workloads [147]. Woltmann

et al. target the training phase directly by enabling training on pre-aggregated data [146].

Others restrict the scope of the problem to achieve tractability. For instance, several authors

focus on the problem of estimating the effect of multiple filters but only on single relation

queries [65, 49]. The Alex system focuses on the problem of needing to update learned

index structures on nonstatic data [48]. Other approaches target tangential problems in the

optimizer such as the plan enumeration stage [90].

27

Some systems take a holistic view of the optimizer and replace multiple components –if

not the entire optimizer– with ML models [132, 102, 116]. SageDB presents such a vision but

still acknowledges the difficulty of vertically integrating a system as complex as a traditional

optimizer into a single model [87]. Many of the same authors also published a paper on

learned index structures which promoted the concept of replacing common index structures

such as b-trees with learned models [88]. The paper can be credited with kicking off this

new trend of utilizing ML models within key components of the system and its impact on

research is undeniable. Cuttlefish also took a more aggressive approach to query optimization

by framing plan selection as a multi-armed bandit problem [77]. The system pivoted between

different physical operators to test their efficiency with the goal of eventually converging on

the fastest operator.

While ML models show some promise, their greatest criticism up to this point is that

their application in systems treats the models as black boxes. The complexity of underlying

data forces complex models, which in turn lack transparency. While a technique might show

promise in a narrow application –one domain, one dataset, one query– practitioners have

little guidance and little reason to believe that those benefits would carry over to other

settings. It is partially for these reasons that in later sections we lay out our reasoning for

simplicity and conservatism in query optimization.

2.4 Entropic Bounds

Our cardinality bounding approach is based on the seminal work by Atserias, Grohe, and

Marx and their introduction of entropic bounds [18]. These bounds are derived from ana-

lyzing the deep connection between information theory and relational databases. For conve-

nience we first review the definition of entropy.

2.4.1 Entropy

Informally, entropy is a mathematical measure of randomness. For the purposes of this docu-

ment, we refer to the information theoretic definition of entropy of discrete random variables.

28

Formally, given some discrete random variable X that takes values xi with probability pi we

define the entropy of X to be

h(X) = −∑
i

pi log(pi)

Intuitively, the uniformly distributed random variables where each pi is equal are the “most”

random and take the value − log(pi) whereas more skewed variables will have smaller entropy

values.

2.4.2 The AGM Bound

The first step towards understanding these bounds comes from analyzing the connection be-

tween information theory and relational databases. Framing relational joins as hypergraphs,

Atserias et al. generate upper bounds based on fractional edge covers [18]. More formally,

consider a conjunctive query on relations R1, . . . ,Rm with attribute collections aaa1, . . . ,aaam.

Using Datalog, the query can be expressed as:

Q (aaa) :-R1 (aaa1) , . . . ,Rm (aaam)

where aaa = ∪jaaaj. We define a hypergraph H which models the schema of the query. A

hypergraph is a generalization of an undirected graph where the hyperedges of the hypergraph

are defined as arbitrary nonempty subsets of the ve, instead of only strictly size 2 subsets.

Let the vertices of H corresponding to the attributes a ∈ aaa. For each relation Rj include

a hyperedge corresponding to the attributes-set aaaj. Figure 2.5 describes query 08c from

the popular Join Order Benchmark (JOB) [91]. For the SQL code given in Figure 2.5a, we

provide the corresponding hypergraph in Figure 2.5b.

A fractional edge cover (u1, . . . , um) of aaa on H is a set of values uj ∈ R≥0 corresponding

to the hyperedges aaaj where for all vertices a of the hypergraph, the sum of the uj values

29

SELECT
MIN(a1 . name) AS writer pseudo name ,
MIN(t . t i t l e) AS mov i e t i t l e

FROM
aka name AS a1 ,
c a s t i n f o AS c i ,
company name AS cn ,
movie companies AS mc,
name AS n1 ,
r o l e t yp e AS rt ,
t i t l e AS t

WHERE
cn . country code = ’ [us] ’
AND r t . role = ’ wr i t e r ’
AND a1 . pe r son id = n1 . id
AND n1 . id = c i . p e r s on id
AND c i . movie id = t . id
AND t . id = mc . movie id
AND mc. company id = cn . id
AND c i . r o l e i d = r t . id
AND a1 . pe r s on id = c i . p e r s on id
AND c i . movie id = mc . movie id ;

(a) SQL query.

movie id

company id

country code

role id
role

person id

namename

aka name

role type

cast info

title

movie companies

company name

(b) Corresponding hypergraph H.

Figure 2.5: JOB query 08c.

corresponding to hyperedges containing a is at least 1. That is, attribute a is covered :

∀a ∈ aaa ∶ ∑
j∶a∈aaaj

uj ≥ 1

Asterias et al. proved that we may bound the join cardinality as follows [18]:

∣Q∣ ≤
m

∏
j=1

∣Rj ∣
uj

This class of bounds is referred to as the AGM bound after being originally developed by

Atserias et al [18]. A proof depends on Shearer’s Lemma and may be found in Appendix

30

A. Note that these formulas assume uniqueness of full tuples within each relation. This

restriction is a fact that must be enforced by the underlying database system. Note that

while some bounding formulas are still valid even in the presence of repeated rows, this is

not generally the case. One method to avoid the pitfalls of non-unique rows is to introduce

a synthetic dummy variable that is unique to every row in a relation.

Khamis et al. extend the AGM bound to include degree parameters [81]. Their contribu-

tions generalize the information theory versus relational join analogy to include conditional

entropic formulations. We refer to this broader class of bounds as the KNS bound. While

the KNS bound is broader, the actual calculation of all formulas within KNS can be highly

complex. For this reason, we will demonstrate how to produce a pared down but still effective

subset in Subsection 3.1.

2.5 Streaming Query Optimization

We now pivot to stream query optimization. Stream query management differs from tra-

ditional analytic query management in that data is not assumed to be complete at time of

querying. Instead, data is continuously streamed in from different data sources and the Data

Stream Management System (DSMS) is charged with delivering new query results based on

the new fresh stream tuples. In this scenario, stream query output may not be finite, as-

suming the streams are not finite either. Examples of data streams include mobile network

usage data, log files from data warehouses, and even social network activity.

This pushes the demands of DSMS away from the architecture of traditional analytic

systems. In particular, the continuous nature of the analytic task means that a single op-

timization stage as depicted in Figure 2.1 is impractical. We may no longer rely on a con-

tinuous flow of data from some local data source whose access the DBMS controls. Instead,

the DSMS must contend with an uncontrolled stream of data and adapt to unforeseen cir-

cumstances as necessary. This blurs the line between the optimization and execution phases

of our standard analytical workflow. For this reason the optimizations that we describe in

Chapter 5 can be viewed as execution optimization as versus traditional query optimization.

31

However, given the unique challenges presented by streams, we argue that the contributions

still fall under the umbrella of join query optimization.

The observant reader will note that the domain of DSMS’s might be more closely related

to transactional DBMSs rather than an analytic DBMS. Transactional systems are a class of

DBMS that focus less on the analysis of static relations and more on the scalable, concurrent,

and correct processing of transactions; small changes to underlying data that may not be

complicated but are numerous. Both areas contend with flucuating flow rate of data and

the processing of many smaller queries/transactions instead of a handful of large analytical

queries. Furthermore, both areas prioritize throughput. However, DSMSs differ from the

transactional paradigm in that they still emphasize complex analysis whereas transactional

systems are more concerned with serializability and scheduling.

DSMSs also introduce a new spin on joins. Temporal joins are joins whose predicate

involves a special attribute that is packaged with each tuple. This attribute is a timestamp,

most often associated with the creation, transmission, or arrival of the tuple. Semantically,

we can think of the timestamp as some numeric value and a temporal join as simply acting

on this numeric value. However, there are inherent challenges given the connection between

the manifestation of the tuple and the timestamp value. In the following section, we explore

this concept further.

2.5.1 Temporal Joins

There are two semantic considerations when defining a time-based join between two or more

streams. The first is how to assign timestamps to tuples. Using event time semantics, the

event source assigns a timestamp to each base stream tuple that remains with the tuple as it

passes through the DSMS. Using processing time semantics, the DSMS assigns a timestamp

to each stream tuple when it arrives, that is, when it is “processed”. Event time semantics

are preferred as event-time timestamps are not susceptible to network failures or latency

concerns. The timestamps are also a more accurate representation of the base tuple data.

Processing time semantics are generally easier to handle as tuples can never arrive out of

32

Figure 2.6: Sliding join between R and S. Tuple r defines time interval [tr − ω/2, tr + ω/2].
Tuples s2, s3, s4 join with r since they live inside this interval. Tuple s1 falls outside the
interval and is therefore not a joining partner.

order since the clock at the DSMS is the ground truth. In this work we use event time

semantics as it is more representative of current systems.

The second consideration is how we define the join predicate. Again there are generally

two approaches: sliding window and hopping window. In sliding window semantics (a.k.a.

interval join), tuples r and s join if their event times fall within ω/2 of one another. See

Figure 2.6. In hopping window join semantics, the windows have a specific length ω and

move forward in steps of size δ. That is, if the first window is [0, ω], then the second is

[δ, δ +ω], the third is [2δ,2δ +ω], and so on. Tuples r and s join if there exists a window W

such that tr, ts ∈W . Note that tuples may fall within multiple windows if δ < ω.

Both sliding and hopping semantics define a collection of time windows where tuples

join if there exists a window in that collection that contains both. Sliding windows define

a superset of the windows defined by hopping windows. In fact, assuming some nontrivial

and bounded event time space, hopping defines a finite number of windows whereas sliding

defines an infinite number. Thus, while we focus on sliding semantics, it should be clear that

our methods are easily applicable to hopping semantics as well. However, the discrete nature

of hopping yields more obvious and straightforward omission techniques. For the rest of this

thesis we use ‘interval join’ to mean a ‘sliding window’ temporal join.

33

2.5.2 Streaming Queries Related Work

Although we are unaware of any existing work on our specific problem of threshold queries

over streaming joins, we have found similar scenarios in the literature where our proposed

techniques may have potential applications.

Load Shedding

One closely related area of research is load shedding, where tuples are dropped (sometimes

at random) to prevent overloading and hence increased latency [46, 134, 22]. One can view

our omission policy as a theoretically optimal form of load shedding.

Dropping tuples randomly leads to an obvious trade-off in query answer degradation.

Past work has often focused on how to implement this degradation gracefully, generally in

response to “bursty” stream behavior overwhelming the system.

Local Geometric Constraint Thresholding

Another line of related research focuses on multiparameter threshold functions over dis-

tributed data [125]. Unlike our work, it preaggregates the data with respect to each object

and compute node and does not explicitly join on timestamps. For instance, vector xj,i

corresponds to some subset of the data corresponding to object j and living at node i. The

full vector describing object j is

xj =∑
i

xj,i

The threshold function is applied to xj. In order to avoid a full distributed aggregation to find

objects that trigger this threshold, the authors describe an algorithm for generating bounds

local to each node using geometric constraints of the parameter vector space. These local

geometric constraints were first highlighted by Sharfman et al. [129, 128]. They generalize

this method from exclusively monotonic functions to functions that may be expressed as

34

the difference of monotonic functions—a class of functions that subsumes the set of globally

quasiconvex functions. Giatrakos et al. expand on this local geometric constraint theme

by incorporating predictors to further reduce the number of system synchronizations that

need to be performed [54]. Their approach relies on individual nodes reliably predicting the

“drift” in vector values in neighboring nodes since the most recent synchronization. This

introduces a trade-off space between system load and query answer quality similar to many

load shedding algorithms.

Analytic Functions over Data Streams

Most commercial streaming and time-series database systems now support analytic functions

over data streams or time series. For example, TimescaleDB [135], a time-series database

built on top of PostgreSQL, offers simple analytic functions such as first(), last(), and so

on. The recently launched Amazon Timestream [10], a serverless time-series database hosted

on Amazon AWS, supports more advanced functions such as computing the cosine similarity

of two vectors. The query language of InfluxDB [72] provides an even richer set of functions

for time-series analysis, such as holt winters() [58, 70]. Although the query language

reference manuals of these systems do not provide specific examples, it is straightforward to

write queries that apply thresholds on top of such analytic functions.

Time-Series Analysis

Thresholding has been a common technique in time-series analysis for various applications.

For example, threshold models, a popular class of nonlinear models in time-series analysis,

have been around for decades [137]. The basic idea is to use different models for different

parts of a time series that are above or below a threshold. Another example is threshold-

based data mining [16, 17], which uses threshold queries for similarity search over time-series

data. The idea is to truncate time series using a threshold, and then measure similarity

between (two) time series using a distance function that only considers the intervals above

35

the threshold. It is possible to express such distance computation using timestamp-based,

streaming joins.

Streaming Joins

Joins over two or more streams have become increasingly popular in real-world applications.

As a result, stream processing systems, such as Apache Spark Structured Streaming [14],

Apache Flink [28], and Microsoft’s Azure Stream Analytics [105], recently started supporting

streaming joins. One common technique implemented by existing systems is the symmetric

hash join algorithm (and an analogous symmetric nested-loop join algorithm) [55, 56, 79,

145], which has to buffer join states in main memory. This raises challenges in applications

where the size of join states can be extremely large. Specialized systems, such as Google’s

Photon [11], have been built to deal with such cases. Our technique provides another novel

perspective on reducing the amount of join state to be kept.

Stream Query Optimization

There has also been quite a bit of work on the query optimization side of stream join pro-

cessing. For example, Viglas and Naughton [142] proposed cost models for both nested-loop

join and symmetric hash join in the streaming context with the goal of maximizing the query

output rate, which can be easily integrated into classic query optimization frameworks such

as ones that are based on dynamic programming. Ayad and Naughton [20] further proposed

a query optimization framework for conjunctive queries over data streams that considers

resource constraints. There are various other optimization techniques for stream query pro-

cessing in general, such as operator separation, fusion, and reordering (see [69] for a survey).

It would be interesting future work to consider the interaction between our technique and

existing query optimization techniques. For instance, if an input stream of a join is the

output stream of a subquery, then we can perhaps push down our tuple omission strategy

into input streams of that subquery.

36

Stream Memory Management

There has been work on systems-oriented techniques for memory management, for example,

offloading operator state in SEEP [29] and Google Cloud Dataflow [30]. These techniques are

orthogonal to our approach, which exploits query semantics for reducing memory. Memory

reduction techniques have been applied in the context of specific operators such as aggregates

over sliding windows [138, 133]; our work uses a similar flavor in the context of state reduction

for join queries.

2.5.3 Quasiconvex Functions

One remaining piece of background is the concept of emphquasiconvex functions. We focus

on this class of functions as they will allow for our omission policy which we describe in

Chapter 5.

We say a function f ∶ R→ R is quasiconvex iff for all x1, x2 ∈ R, for all λ ∈ [0,1]

f(λx1 + (1 − λ)x2) ≤ max{f(x1), f(x2)}.

That is, for all pairs of points x1, x2, when f is evaluated on a point x in between x1 and

x2, f(x) cannot exceed both f(x1) and f(x2). We provide an example in Figure 2.7. We

can generalize the notion of quasiconvexity to a function over multiple variables, f ∶ Rn → R,

where values x1, x2 ∈ Rn are vector valued.

We do not require that a function be globally quasiconvex. We only require it to be

quasiconvex with respect to any streaming input on which we apply our omission policy. A

multivariate function f ∶ (x1, x2, . . . , xn) → R is quasiconvex with respect to x1 if for any

values x̄i≠1 the univariate function g(x1) = f(x1, x̄2, . . . , x̄n) is quasiconvex.

Many classes of functions are quasiconvex. Examples include convex functions, linear

functions, monotonic functions (including step functions, such as floor and ceiling), positive

quadratic, logarithmic, exponential, simple inequality boolean triggers, and the application

of trained linear or logistic regressors. The question of how to automatically determine if a

37

Figure 2.7: Example quasiconvex function.

function is quasiconvex is addressed in Section 5.3.

38

Chapter 3

TIGHTER CARDINALITY BOUNDS

Recall from Chapter 2.1 that DBMSs parse declarative queries, construct plans, and then

execute. Often, the declarative query necessitates one or more joins be performed. Joins

are a fundamental data operation and are a near requirement for any production database

management system (DBMS). The existence of multiple data access methods, physical join

algorithms, and in particular join orderings means the DBMS has a plethora of options

from which to choose. Recall join orderings refer to the specific orderings in which base

(and intermediate) tables are joined together in order to produce the desired output. Recall

further that base tables are relations that already exist as versus intermediate relations which

are computed during plan execution. This complexity is compounded by special orderings

that are either required or a byproduct of different join algorithms and access methods. For

general queries the number of valid join trees is factorial in the number of relations (in fact

a product of Catalan numbers on top of factorial expressions [111]). In order to make sense

of all the available plans, a query optimizer enumerates some or all choices and proceeds

to pick one to execute. The choice of which plan to follow is important. Just because the

output of the different plans is the same doesn’t mean that the efficiency of each plan is the

same (or even close). There can exist many orders of magnitude between the runtime of

one plan versus the runtime of a semantically equivalent alternative. To make this choice,

the optimizer tabulates an estimated cost for each plan and proceeds to pick the cheapest.

This tabulation is parameterized with approximate costs that represent the amount of time

it takes to perform operations in the plan; one disk read, one index lookup, one boolean

filter evaluation, etc. However, one aspect of these large parameterized summations is highly

data dependent; the cardinality (size) of intermediate relations. Since most physical join

39

algorithms are binary, any query with greater than two base tables will necessarily produce

intermediate relations than can then be joined with base or other intermediate relations to

work towards the desired final query output. Leis et al. demonstrate that given a perfect

black box cardinality estimator, systems can estimate plan cost almost perfectly (up to a

constant multiplicative factor) [91]. This implies that the parameterized formulas work but

are crippled by poor cardinality estimates. For this reason, cardinality estimation is often

referred to as the Achilles heel of query optimization [97].

Consider a simple four relation chain query:

R1 &R2 &R3 &R4

In Figure 3.1 we depict every such join tree for the above query.

Luckily, not every intermediate relation is unique; we group the five unique shared sub-

queries by color. In total, valid join plans will cover an exponential number of subqueries,

each of which will require an estimate from the optimizer. While this enumeration may seem

daunting, the greatest challenge is one of data dependency. Small errors estimating selectiv-

ity of filter predicates on base relations compound with an inability to efficiently estimate

correlation between joining columns. Recall that selectivity refers to the fraction of tuples

that satisfy a boolean filter predicate. The result is that the higher one climbs in the join

tree, the greater variance is experienced in intermediate join cardinality estimation. The

more relations the query has, the more complex the family of valid join trees are, which in

turn leads to poorer plans.

As argued in Chapter 2.3, current state of art methods fail to accurately estimate the car-

dinality of intermediate relations. In fact, the prevailing over-reliance on strong assumptions

about the underlying data has led to systematic underestimation across nearly all major pro-

duction systems. We propose the use of cardinality bounds in lieu of cardinality estimates

and demonstrate how to tighten these bounds resulting in more robust query optimization.

40

&

& R4

& R3

R1 R2

(a)

&

& R4

& R3

R2 R1

(b)

&

& R4

& R1

R2 R3

(c)

&

& R1

& R4

R2 R3

(d)

&

& R4

& R1

R3 R2

(e)

&

& R1

& R4

R3 R2

(f)

&

& R1

& R2

R3 R4

(g)

&

& R1

& R2

R4 R3

(h)

&

& &

R1 R2 R3 R4

(i)

&

& &

R1 R2 R4 R3

(j)

&

& &

R2 R1 R3 R4

(k)

&

& &

R2 R1 R4 R3

(l)

&

R1 &

R2 &

R3 R4

(m)

&

R1 &

R2 &

R4 R3

(n)

&

R1 &

R4 &

R2 R3

(o)

&

R4 &

R1 &

R2 R3

(p)

&

R1 &

R4 &

R3 R2

(q)

&

R4 &

R1 &

R3 R2

(r)

&

R4 &

R3 &

R2 R1

(s)

&

R4 &

R3 &

R1 R2

(t)

Figure 3.1: Non-cross product valid join trees for chain query R1 &R2 &R3 &R4. Equivalent
subqueries highlighted in the same color.

41

3.1 Deploying Cardinality Bounds

In this section we present the first version of our approach. The key idea is to use data

sketches to tighten the bounds previewed in Section 2.4.2. The remainder of this Section is

divided up as follows. In Section 3.1.1, we define our core data structure; the Bound Sketch

(BS). In Section 3.1.2, we describe how the BS is used to generate and tighten theoretical join

cardinality upper bounds. We follow up this discussion with two performance optimizations

which make bounding more feasible. In Section 3.1.3, we describe our selection predicate

propogation technique as well as the reasoning behind using it. In Section 3.1.4, we introduce

our hash bucketization budgeting scheme. Finally, in Section 3.1.5, we describe the process

of automatically generating the bounding formula given the query’s hypergraph structure.

3.1.1 The Bound Sketch

We first describe the structure of the BS. Take a relation T (aaa) with attributes a ∈ aaa and

random hash function H ∶ W ↦ {1, . . . ,M} where W is the domain of the attributes. Let

[M] denote integer values {1, . . . ,M} which is the image of the hash function. Tuples in T

take values in the domain W ∣aaa∣. For any tuple t, let t[a] refer to the attribute value of a in t.

Thus, tuples t may be mapped to index value arrays I ∈ [M]∣aaa∣ via the hash function. Note

that multiple distinct tuples may map to the same index array. Given such an index I, let

the I[a] refer to the position in I corresponding to attribute a. For each index array I, we

define the subset T I of relational instance T as those tuples t ∈ T that hash to the values in

I.

T I = {t ∈ T ∶H(t[a]) = I[a], ∀a ∈ aaa}

The BS on T is a collection of ∣aaa∣ + 1-many ∣aaa∣-dimensional tensors of size M × ⋯ ×M

Each cell of the first tensor contains a count value c. We define the I-th entry of this tensor

as cT I = ∣T I ∣. Each cell of the remaining ∣aaa∣ tensors contains a degree value d. In this thesis,

42

we use the term fanout interchangeably with degree. Each of these tensors corresponds to a

conditional attribute in aaa. We define the degree parameter corresponding to variable a ∈ aaa

as the maximum degree for attribute a from the partition T I . I.e. the frequency of the most

frequent a attribute value from the tuples in T I . More formally:

dT I [a] = max
{ w∈W ∶
H(w)=I[a]}

∣ {t ∶ t[a] = w}

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊆T I

∣

Finally, we describe the BS as:

([cT I]
±

count tensor

, [dT I [a1]] , . . . , [dT I [a∣aaa∣]]
´¹¹¹¸¹¹¶

∣aaa∣-many degree tensors

) ∈ ([M]∣aaa∣)
∣aaa∣+1

As an illustrative example, consider the following relation R(x, y). The hash function is an

indicator for even values: h(x) = x%2. We first logically partition R into 2 ⋅ 2 = 4 subsets:

4 0

4 3

7 3

8 0

8 2

9 3

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
R(x,y)

=

4 0

8 0

8 2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
R(x,y)(0,0)

∪

4 3

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
R(x,y)(0,1)

∪

0 0

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
R(x,y)(1,0)

∪
7 3

9 3

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
R(x,y)(1,1)

This data generates the following tensor components in the BS:

⎛
⎜
⎝
cR =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

3 1

0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, dR[x] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 1

0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, dR[y] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 1

0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

Each statistic may be computed by hand: Count sketch cR is computed by counting the

number of tuples in each position; three, one, zero, and two. Degree sketch dR[x] captures

43

the frequency of the most frequent x value in each partition: two (for attribute value 8),

one (for attribute value 4), zero, and 1 (for either attribute values 7, or 9). Similarly for

dR[y] Note that many BS’s are constructed off-line and may be called at runtime for any

joins involving the relevant relation. Those BS’s that are constructed at runtime are done

so to satisfy query-specific filter constraints and we will later argue that these tables would

likely have had to be scanned/probed at runtime, anyway. We further note it is possible to

create the BS from a single pass over the relation. For more details, we refer the reader to

Appendix B.

3.1.2 Our Cardinality Bounds

Next, we describe how the BS is used to tighten guaranteed cardinality upper bounds com-

pared to when applying the bounding formula without use of the BS. Consider schema

R1(aaa1), . . . ,Rn(aaan)

and database instance D on relations R1, . . . ,Rn. Let aaa = ∪jaaaj be the set of all attributes. In

this context if two attributes are equijoined in the given query, then they are considered the

same attribute. Define index array I ∈ [M]∣aaa∣ as before, and let I[aaaj] be the sub-array of I

whose values correspond to the attributes present in aaaj. Define a database instance DI as a

subset of database instance D where for each relational instance Rj(D), we take the subset

Rj (D
I) = {t ∈ Rj(D) ∶ ∀a ∈ aaaj, h (t [a]) = I[a]}

That is, the set of all tuples in Rj(D) that hash to the correct index values for each attribute

in aaaj. Define database instance subset DI = {R1 (DI) , . . . ,Rm (DI)}. Given a conjunctive

query Q(D), observe that we may reconstruct the full conjunctive query using only these

44

DI :

Q(D) = ⋃
I∈[M]∣aaa∣

Q (DI) (3.1)

Note that this is a necessarily disjoint union. We now invoke the primary results of the AGM

and KNS bounds (See Chapter 2.4.2). As an illustrative example we describe a triangle query:

Q (x, y, z) :-R (x, y) , S (y, z) , T (z, x) (3.2)

Take a triple of random variables (X,Y,Z) corresponding to attributes x, y, z, respectively,

and ranging uniformly over the collection of all tuples in the true output. The size of the query

is tied to the joint entropy of all three variables. Specifically, h(X,Y,Z) = log ∣Q(x, y, z)∣. By

construction on the domain space of the triple (X,Y,Z), and since our query only includes

equivalence join predicates, for any subset of {X,Y,Z} which happens to correspond exactly

to the attributes of some relation in our schema we may bound the entropy of that subset

of variables. Specifically:

h(X,Y) ≤ log(cR), h(Y,Z) ≤ log(cS), h(Z,X) ≤ log(cT)

Similarly, we may relate conditional entropic formulas to our degree statistics:

h(X ∣Y) ≤ log(dyR), h(Y ∣X) ≤ log(dxR)

h(Y ∣Z) ≤ log(dzS), h(Z ∣Y) ≤ log(dyS)

h(Z ∣X) ≤ log(dxT), h(X ∣Z) ≤ log(dzT)

45

We may exploit conditional subadditivity, as well as Shearer’s lemma (Lemma A.0.2) to

generate entropic bounds for h(X,Y,Z):

h(X,Y,Z) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h(X,Y) + h(Z ∣Y), h(Y,Z) + h(X ∣Z), h(Z,X) + h(Y ∣X)

h(X,Y) + h(Z ∣X), h(Y,Z) + h(X ∣Y), h(Z,X) + h(Y ∣Z)

1
2h(X,Y) + 1

2h(Y,Z) + 1
2h(Z,X)

(3.3)

Each of these entropic bounding expressions corresponds to a bounding formula for Q(x, y, z).

We enumerate the corresponding query cardinality bounding formulas for the entropic bound-

ing expressions in Equation 3.3:

∣Q(D)∣ ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cRd
y
S, cSdzT , cTdxR

cRdxT , cSd
y
R, cTdzS

(cR)
1
2 (cS)

1
2 (cT)

1
2

(3.4)

While these formulas represent the complete KNS bound, we often will only generate a

subset. Specifically, those formulas expressible with the BS and also not strictly dominated

by other bounding formulas. For a full justification, we refer the reader to Appendix A as

well as the original papers: [81, 18]. Finally, we may combine the bounds over the database

partitions defined in Equation 3.1. Summing over all index combinations provides an upper

bound on D.

∣Q(D)∣ ≤ ∑
I∈[M]∣xxx∣

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cRIdy
SI , cSIdz

T I , cT Idx
RI

cRIdx
T I , cSIdy

RI , cT Idz
SI

(cRI)
1
2 (cSI)

1
2 (cT I)

1
2

(3.5)

The bound derived from 3.5 should be tighter than the bound derived from Equation 3.4 since

it has access to more information about the underlying data. In Section 3.2 we demonstrate

46

that this behavior is exhibited on real world data.

3.1.3 Filter Propagation and Preprocessing

We now describe an optimization to make calculation of these bounds more tractable. Specif-

ically, we propagate filters through foreign key joins to simplify the join topology. We again

consider the JOB query featured in Figure 2.5. We provide an alternative relation-centric

graphical representation of this query in Figure 3.2. In this illustration the nodes represent

relations and edges between the nodes represent join predicates. Note that there exist 4

distinct join attribute equivalence classes across the seven tables. Specifically, these are the

ID’s for individual films, people, companies, and role types represented by edge colors blue,

red, orange, and violet, respectively. Primary-key-foreign-key (PK-FK) constraints are rep-

resented by arrows pointing in the direction of the relation where the attribute is a primary

key. Dashed lines represent foreign-key-foreign-key (FK-FK) joins. To increase efficiency at

the planning stage, it is best to eliminate as many join attributes as early as possible.

title

movie companies

company name

cast info

role typename

aka name

Figure 3.2: JOB query 08c join attribute graph.

This is easily done by first analyzing the query topology and then eliminating join at-

tributes (and hence also some relations) which will not increase the output cardinality. For

47

instance, JOB query 08c features the selection:

role type.role = ’writer’

This particular string selection corresponds to a set of role type ID’s. Often this is a highly

selective predicate and in this case only corresponds to a single ID: {4}. It is therefore possible

to preprocess the relation cast info and generate a fresh BS on σrole type id=4(cast info).

This is not practical (or beneficial) in all cases. For instance, JOB query 08c also features

the following selection:

company name.country code = ‘[us]’

In contrast to the previous example, this selection will correspond to several thousand com-

pany ID’s1. Our system detects the large number of returned IDs while preprocessing

company name and will instead default to generating an updated BS for

σcountry code=‘[us]’(company name)

In this manner, we decompose a join into only those predicates which threaten to cause

blowup in intermediate products.

Preprocessing also helps us broaden the scope of our method. Although we are currently

only able to handle equivalence predicates during our bound generation, propagation of se-

lections allows us to handle LIKE, and inequality (≥,>,≠,≤,<) filter predicates. This method

requires scanning relevant base relations at runtime. However, only a single scan is required

and we argue that for queries featuring FK-FK joins between large relations, the prepro-

cessing time is insignificant compared to the risk of poor plan selection. In the case of our

running example (JOB 08c), these “dangerous” attributes featuring FK-FK join predicates

1132,917 individual companies

48

are people, and films and are highlighted as dashed lines in Figure 3.2.

We emphasize that some sketches can be cached ahead of time, while others must be

populated at runtime. If a relation is subject to any filter predicates following filter selec-

tion propagation, then the BS associated with that relation must be populated at runtime.

Otherwise, the BS may be drawn from cache and will not require a scan of the table.

3.1.4 Hash Partition Budgeting

The hash partitioning approach on join attributes leads to the question: how many buckets

should be used for each join attribute? If we set a fixed partition size for each attribute, the

set of all hash value combinations can grow exponentially with the number of join attributes

even after selection propagation. Generating a bound for each combination of hash values

can quickly become computationally impractical as the number of join attributes grows.

Furthermore, it is in fact possible for the sum of these bounds to increase as we increase

hash size. This is due to hash collisions between non-joining tuples, and the exponential in

hash size number of terms (hash value combinations) in the bound summation. We have

included a simple example in Appendix C demonstrating the potentially non-monotonic

behavior of our bound.

We simultaneously address both these problems by introducing a hash partition budget-

ing scheme. The underlying idea is simple: for any bounding formula, and bucket threshold

B, we only calculate a bound for at most B hash value combinations. We distribute this

budget to those attributes that are covered unconditionally by a relation. That is, the vari-

able associated with the attribute appears in an unconditional entropic term in the entropic

bounding formula associated with the cardinality bounding formula. By only partitioning

unconditionally covered variables, we get the desired behavior that increasing partition bud-

get should tighten our bound. In fact, if we only increase the partitioning budget by integer

factors from B to B′ = B ⋅ r and thereby only allow subpartitioning of existing buckets, this

monotonic behavior is guaranteed. Monotonic behavior is not guaranteed when partitioning

49

join attributes that are covered conditionally. For example, consider the following query:

Q(x, y, z,w):-aka(x, y),ci(y, z),mc(z,w),cn(w) (3.6)

This query yields multiple bounding formulas including the following two examples and their

corresponding entropic formulas:

caka ⋅ d
y
ci ⋅ d

z
mc ∶ h(X,Y) + h(Z ∣Y) + h(W ∣Z) (3.7)

dyaka ⋅ cci ⋅ d
z
mc ∶ h(X ∣Y) + h(Y,Z) + h(W ∣Z) (3.8)

For the bound formula in Equation 3.7, we dedicate all of our B budget to the only uncondi-

tionally covered join attribute: y (covered unconditionally by aka). Note that x is not a join

attribute; we would not benefit from partitioning x. In this scenario, the number of hash

buckets for y, z, and w are B, 1, and 1, respectively. That is, z and w are not partitioned at

all. Alternatively, for the bound formula in Equation 3.8, we observe that join attributes y,

and z are both covered unconditionally by ci. We therefore dedicate
√
B buckets to both

y and z so that the total number of hash-index combinations is
√
B ⋅

√
B = B. We provide

illustrations for the bounding formulas in Equations 3.7, and 3.8 in Figures 3.3a, and 3.3a,

respectively where B = 4.

The primary shortcoming to our budgeting strategy is that the index combinations are

no longer directly comparable between distinct bounding formulas since each formula now

demands a different hashing scheme. The general bounding expression now minimizes over

all bounding formulas instead of over all index combinations. While this does remove some

inherent gains from fine granularity minimization (i.e. minimizing inside Equation 3.5’s

summation), our experiments demonstrate that for a single query, a majority of index com-

binations tend to favor a single bounding formula. Hence, this modification represents a

worthwhile trade off between the benefits of fine grained comparison, robust performance,

and sufficient generality to include queries with a large number of join attributes. Our new

50

aka ci mc cn

cn
a
k
a
[0
]

a
k
a
[1
]

a
k
a
[2
]

a
k
a
[3
]

ci[3]

ci[2]

ci[1]

ci[0]

mc

(a) Partitioning for formula caka ⋅ dyci ⋅ dzmc, budget B = 4. Partitioning of size 4 given to y attribute.

aka ci mc cn

cnaka[0] aka[1]

ci[0,0] ci[1,0]

ci[0,1] ci[1,1]

mc[0]

mc[1]

(b) Partitioning for formula dyaka ⋅ cci ⋅ dzmc, budget B = 4. Partitioning of size 2 given to both y and
z attributes.

Figure 3.3: Hash partition budgeting illustration for formulas in Equations 3.7 and 3.8
regarding the query in Equation 3.6.

general expression is:

∣Q(D)∣ ≤ min
b∈

bounding formulas

⎛
⎜
⎜
⎝

∑
I∈

partition indexes

b (Q (DI))

⎞
⎟
⎟
⎠

(3.9)

This modification also affects the sketch generation step. We observe that even for a

single partitioning budget, different bounding formulas might each necessitate a BS from the

same relation but of different dimension. However, since relations will generally not exceed

three foreign keys, there are few combinations of relevant tensor dimensions leading to few

sketches describing the same relation. Furthermore, each sketch is inherently limited to the

budgeted number of partitions B (or is many degrees of magnitude smaller) and hence the

storage overhead for storing offline sketches is also low.

As an illustrative example, consider again the query in Equation 3.6 which we reproduce

51

below for convenience:

Q(x, y, z,w):-aka(x, y),ci(y, z),mc(z,w),cn(w)

The bounding formulas dyaka ⋅ cci ⋅ d
z
mc will require a

√
B ×

√
B dimension BS for relation ci,

whereas bounding formula caka ⋅ d
y
ci ⋅ d

z
mc will require a B × 1 dimension BS (with respect

to attribute y). However, since both sketches may be generated in a single pass, we may

construct them in parallel.

3.1.5 Bound Formula Generation

We continue with our running example of JOB query 08c. Selection propagation helps us

eliminate one of four join attributes. In this task, we employ a further optimization: ignoring

remaining dangling K-FK joins. We do this because the degree multiplier on the key side of

the join is one (by definition). It is usually not the case that this information will help to

tighten the bound. For example, when considering the join movie companies & title, the

resulting output will be determined by the FK side of the join, in this case movie companies.

In fact, this is always true assuming the database does not allow dangling FK pointers to

nonexistent keys. We therefore ignore joins satisfying this restriction. Note that in JOB query

08c, the inclusion of the relation company name does not satisfy these conditions because

there is a further selection predicate on company name.country code. While this selection

is not sufficiently selective to warrant full selection propagation, it is significant enough to

warrant the presence of company name in our bounding formulas. The selection predicate has

created a situation where keeping a dangling FK pointer in the movie companies relation

might be beneficial. The modified hypergraph following selection propagation and removal

of (most of the) dangling K-FK joins may be found in Figure 3.4. Note that we left an

unnamed “attribute” represented simply by a dot in the the

σcountry code=‘[us]’(company name)

52

movie id

company id

person id

name

aka name

σrole type id=4(cast info)

movie companies

σcountry code=‘[us]’(company name)

Figure 3.4: Hypergraph of JOB 08c following propagation of the role type and
country code selection predicates.

relation. This is because company id is a foreign key in company name but not a primary

key. This inherently implies there exists other attributes which company name must cover

and avoids violating the duplicate tuples restriction.

The task of generating bounding formulas is as follows. We first consider all combinations

of attribute coverages and filter those that do not fit within our bounding scheme. Using

these coverages, we then build our explicit bounds. The pseudocode for generating our

bounding formulas and coverages may be found in Algorithms 1 and 2.

The algorithm ingests the attribute-centric hypergraph representation and iterates through

coverage assignments for each attribute. That is, for every coverage combination, each at-

tribute will be covered by precisely one of the relations which features that attribute. For

every possible coverage combination we consider only those that are expressible by elements

of the BS. This implies for all relational hyperedges e, the number of attributes covered by

e must take one of three possible values in order for our sketches to be applicable: 0, ∣e∣, or

∣e∣ − 1.

The intuition for these three possibilities is as follows:

53

Algorithm 1 Bound Formula Generator. Given a hypergraph representation of a query,
returns a collection of bounding formulas where each formula takes the form of a 2-tuple:
(c, d = (r, a)) ⊆ R × (R × A). We let c be the set of relations contributing count statistics.
We let d = (r, a) be the set of pairs of relations r and corresponding attributes a, where r
contributes a degree statistics with respect to a.

1: procedure Bounding Formulas(H = (A,R)) ▷ input hypergraph where A are
attributes (vertices) and R are Relations (hyperedges)

2: B ← Gen Covers(H) ▷ generate coverages
3: F ← {} ▷ bounding formulas
4: for rrr = (r1, . . . , r∣A∣) ∈ B do
5: c← {} ▷ relations contributing count terms
6: d← {} ▷ relations contributing degree terms
7: for r ∈ R do
8: cover count← ∣{r′ ∈ rrr ∶ r′ = r}∣
9: if cover count = 0 then
10: pass ▷ relation r does not appear in bounding formula
11: else if cover count = ∣r∣ then
12: c← c ∪ {r}
13: else if cover count = ∣r∣ − 1 then
14: a ▷ a will be unique attribute in r that is not paired [covered] by r in rrr
15: for a′ ∈ r do
16: if rrr[a] ≠ r then
17: a = a′

18: d← d ∪ {(r, a)}
19: else ▷ all other possibilities filtered by Gen Covers

20: F ← F ∪ {(c, d)}

21: return F ▷ bounding formulas

54

Algorithm 2 Feasible Coverage Generator. Given a hypergraph representation of a query,
returns a restricted collection of attribute to covering relation mappings.

1: procedure Gen Covers(H = (A,R)) ▷ input hypergraph
2: C ←∏a∈A {r ∈ R ∶ a covered by r} ▷ cross product
3: B ← ∅

4: for rrr = (r1, . . . , r∣A∣) ∈ C do
5: safe = True

6: for r ∈ R do
7: if ∣{r′ ∈ rrr ∶ r′ = r}∣ ∉ {0, ∣r∣, ∣r∣ − 1} then
8: safe = False

9: if safe then
10: B ← B ∪ {rrr}

11: return B ▷ feasible coverages

• If a relation has coverage size 0, then it has no coverage responsibilities and need not

appear in the resulting bound formula at all.

• If a relation has coverage size equal to the number of attributes present in the relation,

then this corresponds to an unconditional entropic term. Therefore, the count term

for the relation will appear in the resulting bound formula.

• If a relation has coverage size equal to the number of attributes present in the relation

minus 1, then this corresponds to a conditional entropic term conditioned on that

missing attribute. Therefore, the degree term for that relation with respect to that

missing attribute will appear in the resulting bound formula.

We note that other coverages can also lead to valid bounding formulas. In case a join

attribute is covered by more than one relation, the bound will still be valid, but the formula

will be dominated by a similar formula where that attribute is instead only covered by a

single relation. That is, there exists a formula that must produce a bound that is less than

or equal to the multiple coverage bound. Another consideration is those coverages where

there exists a relation e which covers at least one attribute, but fewer than the number of

join attributes present in e minus 1. This corresponds to a degree term with respect to

55

name peopleID filmID companyID ⋅

1 a1 a1 ci mc cn

2 a1 a1 ci cn cn

3 a1 a1 mc mc cn

4 a1 a1 mc cn cn

5 a1 ci ci mc cn

6 a1 ci ci cn cn

7 a1 ci mc mc cn

8 a1 ci mc cn cn

(a) Coverage combinations.

formula

1 ca1 ⋅ d
peopleID
ci ⋅ dfilmIDmc ⋅ dcompanyIDcn

2 ca1 ⋅ d
peopleID
ci ⋅ ccn

3 ca1 ⋅ cmc ⋅ d
companyID
cn

4 ca1 ⋅ d
companyID
mc ⋅ ccn

5 dpeopleIDa1 ⋅ cci ⋅ dfilmIDmc ⋅ dcompanyIDcn

6 dpeopleIDa1 ⋅ cci ⋅ ccn
7 dpeopleIDa1 ⋅ dfilmIDci ⋅ cmc ⋅ d

companyID
cn

8 dpeopleIDa1 ⋅ dfilmIDci ⋅ dcompanyIDmc ⋅ ccn

(b) Bound formulas.

Figure 3.5: JOB query 08c coverage combinations and their corresponding bound formulae.

greater than one attribute. Since we restrict our BS’s to not include these terms, we cannot

use these coverages. The generated coverages and corresponding bound formulas for JOB

query 08c are enumerated in Figure 3.5. For readability, we refer to relations with their

name abbreviations as it appears in Figure 2.5a. We abuse notation and refer to the filtered

relation σrole type id=4(cast info) simply as ci.

Note that some bounding formulas entirely separate the query graph into disjoint sub-

graphs (formulas 2, 3, 4, and 6). On the other hand, some formulas treat the join as a single

long chain where they start with the count term on a single relation and build outward with

degree multipliers (formulas 1, 5, 7, and 8). Finally, note that only formulas involving the

count term ccn on company name (formulas 2, 4, 6, and 8) are likely to benefit from the

selection predicate on company name.country code. This is because companyID is a key

in company name but the selection is not highly selective. Hence, the remaining formulas

will instead feature dcompanyIDcn terms which will almost always take value one during actual

calculation.

56

3.2 Evaluation

In this section we evaluate our bounds on real world data. We begin by describing our

datasets and workloads in Subsections 3.2.1 followed by a brief discussion of our implemen-

tation in Subsection 3.2.2. In Subsection 3.2.3 we investigate how effective our partitioning

strategy is at tightening bounds. Finally, in Subsection 3.2.4 we demonstrate the effect of

our tightened bounds on query execution time.

3.2.1 Datasets and Query Workloads

We focus on two datasets and associated workloads. The first is a collection of 45 GooglePlus

community edge-sets [57]. The edge counts within the communities range between 228,521

and 1,614,977, and the cardinality of the self-join triangles derived from these respective

communities range between 1,791,588 and 130,322,694. Each tuple (A,B) in an edgeset

represents an “A follows B” relationship and is therefore not necessarily bidirectional. The

edgesets therefore comprise directed graphs.

We design a microbenchmark based on this dataset. We construct 11 distinct query

templates, each featuring a unique topology and involving between two and five relations.

Examples are give in Appendix D. Each template yields 20 distinct queries based on a

different GooglePlus edgeset. The specific community that is chosen for each query is chosen

uniformly and without replacement from the collection of 45. Furthermore, each template

includes random filter predicates on different relations throughout each query. The filter

predicates take the form

table.follower id % K = x, table.followed id % K = x

K is tuned for each template in order to control the relative size of each query output. For

instance, queries with more relations tend to generate a larger result due to the presence

of more FK-FK join attributes. In this situation, K is set to a larger value resulting in

57

a more selective filter. K is set to a lower value for templates with fewer relations. x

is chosen at random for each individual query, and independently from each filter within

the same query. Note that the microbenchmark is comprised of self-join queries analogous

to the subgraph isomorphism count problem within a single GooglePlus community [52].

While joining across different communities is generally possible, the joining columns are

often insufficiently correlated to capture a significant FK-FK join blowup. Hence, we rely

on self-joins.

The second dataset we use is the IMDb movie and television dataset [9]. It features

several entity table as well as association tables relating entity tables to one another. The

largest relation in the IMDb dataset is cast info which assigns cast members to specific

films and contains 59,906,495 rows. The workload we use with the IMDb dataset is the

popular Join Order Benchmark (JOB). The JOB features 33 unique join topologies. Each

topology yields several queries by swapping in different filter predicates on base relations to

create a new unique query. The JOB consists of 113 unique queries in total [91].

3.2.2 Implementation

All experiments are run on a modified Postgres 9.6.6 instance [122]. Note that the only

modification is to allow the optimizer to use our bounds instead of calling the traditional

cardinality estimation infrastructure. The bounds are calculated via an external module.

The postgres parsing, and execution layers remain unchanged. We use the non-cryptographic

Murmur3 algorithm with varying seed values as our hash function [12]. We highlight that our

proposed modification is typically a lightweight change leaving almost all of the remaining

database engine untouched.

3.2.3 Progressive Bound Tightness

We demonstrate that increasing the partitioning budget may significantly tighten our bounds

using the googleplus microbenchmark for partition budgets 1, 8, 64, 512, and 4096. For

comparison, we also include the results using Postgres’ default query optimizer. Our metric

58

is Relative Error (RE) which we define as follows:

RE(truth, estimate) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ truth = 0 & estimate > 0

1.0 truth = 0 & estimate = 0

estimate
truth else

Figure 3.6 includes histograms of the RE between the true cardinality, and the estimate

or bound of each materialized join and subjoin. Each histogram operates on a logarithmic

bucket scale on the x-axis. We observe that as the partitioning budget grows, the observed

bounds shrink dramatically. At budget 4096, the majority of estimates hover just above the

true value indicating it is likely impractical to increase budget any further. We also note

that Postgres does not strongly favor underestimation in these experiments. This is because

the queries from the microbenchmark include filters on arbitrary IDs that do not pertain to

the real world. They therefore do not introduce the inherent correlation one might expect

from a community graph. Note that Postgres’ estimates cast a much wider logarithmic RE

distribution than using bounds. This suggests the RE between different subqueries can be

significantly larger and can lead to poor join orderings.

Finally, we demonstrate that using these bounds translates into plan execution time

improvement. For each of the above partitioning budgets and default Postgres, we include an

aggregate average plan execution time. This value is the sum of the average plan execution

time of five runs for each query in the microbenchmark. Ahead of each such run of five

repetitions, we execute an initial un-timed cache “warm-up”. The resulting aggregate plan

execution times may be found in Table 3.1. While allocating a larger partitioning budget

does lead to faster plan execution time, the benefits are not particularly dramatic. In order

to better demonstrate the runtime-practicality of our approach over standard cardinality

estimation methods, we pivot to the more realistic JOB.

59

Figure 3.6: Relative Error of the default Postgres optimizer (labeled Postgres), and of our
bounds for an increasing hash partitioning budget over the GooglePlus microbenchmark.
Using bounds with partitioning budget one corresponds to the traditional KNS bound.

3.2.4 Plan Execution Time Improvement

We demonstrate that our pessimistic query optimization strategy generates more robust

query plans. As an initial comparison, we have modified a Postgres instance to use our bound

values directly as cardinality estimates instead of the default Postgres query optimizer’s

estimates. We investigate two common settings: when the database has precomputed FK

indexes, and when it hasn’t. We relate this comparison to one between experienced and

inexperienced users: an experienced user will precompute these indexes dependent on the

nature of her workload, while an inexperienced user might not. As in many other systems,

Postgres FK indexes are only precomputed through explicit user defined commands and not

set as a default. Query plan execution times in the precomputed FK index setting may be

found in Figure 3.7a. Query plan execution times in the FK index absent setting may be

60

(a) Linear scale JOB plan execution time when FK indexes available.

(b) Linear scale JOB plan execution time when FK indexes unavailable.

(c) Log scale JOB plan execution time when FK indexes unavailable.

Figure 3.7: Individual JOB query plan execution times for Postgres optimizer using Post-
gres’ default cardinality estimation (gray) versus optimizers using cardinality bounds (blue).
Queries highlighted in red represent those default Postgres plans that failed to complete
ahead of the one hour time limit (No plans generated using bounds hit time cutoff). Each
graph independently sorts on default Postgres cardinality estimation plan execution time.
For readability, only approximately half of all 113 JOB queries are displayed.

61

Optimizer Setting Aggregate Plan Runtime

Default Postgres 46.9 minutes
Budget 1 39.1 minutes
Budget 8 39.1 minutes
Budget 64 37.2 minutes
Budget 512 36.9 minutes
Budget 4096 36.8 minutes

Table 3.1: GooglePlus microbenchmark aggregate plan execution time and added prepro-
cessing time. We vary the optimizer settings with partitioning budgets 1, 8, 64, 512, and
4096 as well as default Postgres optimizer

found in Figures 3.7b, and 3.7c. Each query is run six times in total: the first run to warm

up cache and the reported time is the average of the remaining five runs.

In the presence of FK indexes, we find the aggregate plan execution time over all JOB

queries to be 3,190 seconds when using the plans generated via Postgres’ default cardinal-

ity estimates. In contrast, the aggregate execution time for plans generated using bounds

is only 1,831 seconds, representing a saving of nearly 43%. While most queries yield ap-

proximately equivalent plan execution times for those queries that are relatively inexpensive

(w.r.t. default Postgres plan execution time), using bounds yields much faster plans for

expensive queries. This supports the notion that using bounds leads to more robust query

optimization.

When FK indexes are stripped away, this divide between bound-generated and default

Postgres-generated plans widens. This is because FK accesses have become significantly more

costly and more computation must be performed at runtime. We find the aggregate plan

execution time over all JOB queries to be 24,725 seconds when using the plans generated via

Postgres’ default cardinality estimates compared to only 2,304 seconds when using bounds.

This is an order of magnitude difference.

We also place a one hour cutoff on each plan execution time: this limit is enforced on

five of the default Postgres plans. Note that only approximately half of all JOB queries

are included in Figures 3.7b, and 3.7c, for readability. This is why only three of the five

62

aforementioned time-limit aborted queries appear. While we do not penalize those queries

beyond the one hour mark, their actual plan execution time can be significantly longer. Some

queries may fail entirely. Note that the bound-generated aggregate plan execution times with

and without foreign keys are not significantly different. This suggests that bounds can help

produce efficient plans even when modifying the amount of metadata (in this case, foreign

key indexes).

The downside of using the BS is the increased optimization time. We populate our

sketches using a naive algorithm based on the SQL query found in Figure B.1, which we

feed to our modified Postgres instance. While this method is sufficient to demonstrate that

more robust plans are possible, it is not optimized for efficient optimization time. In the

presence of FK indexes, the additional optimization time over the JOB is 4,795 seconds.

This additional optimization time is longer than execution time. Without FK indexes, the

additional optimization time is 6,450 seconds. Again, the additional optimization time is

longer than actual execution time but insignificant compared to the execution time for plans

generated by default Postgres. These issues are corroborated by independent investigations

in G-Care [117].

Further investigation into the individual plans suggests that using bounds pushes the

optimizer to make more conservative planning decisions. This generally means that the

optimizer is more likely to generate shallower, bushy tree plans rather than the typical left

deep plan. We find that default Postgres severely underestimates intermediate join size

higher up the tree. This will naturally encourage the optimizer to generate a left deep plan

in order to avoid the cost of building a hash table on, or sorting some intermediate product

and instead stream what it predicts will be few intermediate tuples past preexisting base

table indexes. This wrong assumption is indeed where default Postgres suffers the most.

Alternatively, plans based on bounds suffer the most when the bounds far overshoot and

materializing intermediate products and data structures is suboptimal. Nevertheless, we

argue that these mistakes are generally less costly at runtime than those associated with

underestimation.

63

We have included a comparison between the RE for our bounds and default Postgres’

cardinality estimates in Figure 3.8a. The PDFs include the relative error of bounds from

all the intermediate relations appearing in either the plan produced by using our bounds

or from default Postgres. Even though the object of our methods is not to produce highly

accurate cardinality estimates, we still enjoy a generally lower RE than default Postgres. In

order to compare the tightness of both distributions to the true value, we employ q-error

[108].

q-error(truth, estimate) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ truth = 0 & estimate > 0

1.0 truth = 0 & estimate = 0

max (estimate
truth , truth

estimate
) else

That is, q-error is equivalent to RE when the estimate is greater than the true value. When

the estimate is below the true value, we invert the RE. The inverted or equivalent rela-

tionship between RE and q-error is highlighted by the similarity in log distributions (see

Subfigures 3.8a, and 3.8b). Note that when using upper bounds, RE and q-error are equiv-

alent. We include the PDFs, and CDFs of the q-error for our bounds and default Postgres’

cardinality estimates in Figures 3.8b, and 3.8c, respectively. We highlight that our bounds

are consistently tighter to the true value.

3.3 Conclusion

In this chapter we argue that using bounds is a legitimate strategy for achieving robust

query optimization. We emphasize that our bounds are known ahead of time to be single

sided (overestimates), whereas traditional methods may produce both overestimates and un-

derestimates which will drive the RE between different intermediate relations even further

apart. I.e. if intermediate relation A is overestimated by a factor of 10, whereas intermediate

relation B is underestimated by a factor of 0.1, their RE between the two intermediate rela-

tions is a factor of 100. Moreover, we demonstrate using challenging workloads on real world

64

data that our bounds outperform traditional methods on single node production systems

via lightweight changes to the optimizer. Our evaluation demonstrates that the majority of

our gains come from safe plans on a few minority “disaster” queries. For the remainder of

queries where traditional methods are already sufficient, using bounds leads to plans that

are approximately on par. In the following chapter, we extend this work and address some

key shortcomings to our prototype implementation.

65

(a) PDFs of JOB intermediate product cardinality
bounds RE (with partitioning budget 4096) versus
default Postgres cardinality estimate RE.

(b) PDFs of JOB intermediate product cardi-
nality bounds q-error (with partitioning budget
4096) versus default Postgres cardinality estimate
q-error.

(c) CDFs of JOB intermediate product cardinality bounds q-error (with partitioning budget 4096)
versus default Postgres cardinality estimate q-error.

Figure 3.8: JOB relative and Q-Error distributions

66

Chapter 4

GENERALIZING CARDINALITY BOUNDS

In the previous chapter we build the framework necessary for using tightened entropic car-

dinality bounds in place of traditional estimates in a Database Management System (DBMS).

In doing so we combat the problem of systematic cardinality underestimation that pervades

modern production systems [91]. While using cardinality bounds shows promise in single

node systems, our first attempt leaves many open questions (both theoretical and practical)

regarding large scale parallelized query processing. As the field moves towards flexible fleets

of commodity hardware, questions regarding optimization cost, scaling/parallelizability, and

adaptivity need to be addressed. Note that each of these challenges cannot be addressed in

a vacuum. Many share the same root causes and hence will also benefit from the same so-

lutions. However, for organizational purposes, we treat them separately and highlight when

the issues intersect.

We consider these challenges in the following sections and preview a practical imple-

mentation. We emphasize Spark as it represents an accepted mainstream big data system

designed for the parallelized environment [15, 148, 149].

4.1 Integrating Bounding into the Optimizer

In this section we detail a closer integration of our bounding technique into the standard

query optimizer structure. We do so to combat arguably the greatest drawback of using

our bounds; optimization overhead. I.e. the time and resources spent by the optimizer to

generate a physical plan. While the prototype implementation was by no means an optimized

library, the issue remains that in order to successfully execute our bounds optimization time

represents a severe hit to the planning phase.

67

The most obvious source of increased increased optimization time comes is the handling

of filter predicates at runtime. Ad hoc queries will naturally contain various selection clauses

that might drastically change the attribute value distributions of different base relations. This

renders precomputed bound sketches (See Chapter 3.1.1) useless and fresh sketches reflecting

the filter predicate. This problem is somewhat intractable due to the unpredictability of ad

hoc queries but we nevertheless present some optimizations in Subsection 4.1.1.

A more subtle source of increased optimization time comes as an impedance mismatch

between entropic bounding formulas and standard join enumeration. Traditional cardinality

estimation methods integrate well into the enumeration process. Entropic bounds and the

associated sketches, on the other hand, do not immediately have a convenient one-to-one

mapping to specific subqueries. The result is that in our prototype implementation the

bounding formula is forced to be an entire separate module from the join enumerator. This

separation is inefficient and leads to a more complex engineering task. In Subsection 4.1.2

we preview the typical join enumeration process. In Subsections 4.1.3 and 4.1.4 we develop

a framework for integrating our bounding technique conveniently into the enumerator.

4.1.1 Pushing Filter Predicates through Bounding Formulas

The first issue we address is filter predicates. The need for base table statistics to reflect

filter predicates is particularly challenging, as the only reasonable way of achieving this is

to access the base data. Our initial implementation skirts the issue by executing subqueries

via our filter predicate propagation described in Chapter 3.1.3. However, this is inefficient.

One solution is that the results from the filter propagation should be reused in the full query

execution. This is a tempting direction since pushing filters down to base relations is a

good idea and will appear in the optimal query plan in almost all analytical workloads. For

this reason, the cost of accessing base tables to assess the affect of filter predicates may be

amortized into execution time if the results of this filter is then operated on directly by the

remainder of the physical plan. This idea is similar to some sampling systems where join

tuples generated during optimization are reused during execution [92]. However, this isn’t

68

a perfect elimination of repeated work as it will require the explicit materialization of the

filtered base table. This materialization can be resource intensive depending on the size of

the join samples. In the case of a highly selective filter, materializing the filtered table is

relatively cheap. However, if the filter is not selective then materializing a filtered table that

is almost the size of the original relation is prohibitively expensive and the physical plan

should just access the base table directly. In the scenario where the base table has an index,

it is possible that accessing the sample materialization might actually be slower. Hertzschuch

et al. avoid this issue via a sampling procedure that approximates the selectivity of complex

filters on base relations [68]. However, it should be noted that their procedure does not

re-estimate the degree statistic reflecting the filter predicate.

Finally, materializing a subset of some intermediate relation runs counter to the tuple

or mini-batch-at-a-time architecture that dominates production systems. Modern fast query

execution typically does not materialize intermediate results but instead pipelines data from

one operator directly to the next operator [112].

4.1.2 Join Enumeration

We shift our focus to the algorithmic features of integrating bounds into the optimizer. Much

of this involves integrating the use of bounds into the standard join enumeration stage. In

Chapter 2 we previewed the typical bottom-up join enumeration procedure. In this section

we go into further detail on the enumerator and describe how bounding can be elegantly

integrated into this enumeration procedure.

Typical the optimizer must efficiently enumerate all subqueries. Consider the following

four relation query:

Q(x1, x2, a1, a2, a3, a4) ∶ −R1(x1, a1),R2(x1, a2),R3(x1, x2, a3),R4(x2, a4) (4.1)

Note that the xi are the only join attributes in the above query. The ai are dummy attributes

included to allow for repeated tuples in the relations. A graphical representation for the above

69

R1

R2

R3 R4

R1

R2

(a) R1,R2

R1

R2

R3 R4

R1

R3

(b) R1,R3

R1

R2

R3 R4

R2

R3

(c) R2,R3

R1

R2

R3 R4R3 R4

(d) R3,R4

R1

R2

R3 R4

R1

R2

R3

(e) R1,R2,R3

R1

R2

R3 R4

R1

R3 R4

(f) R1,R3,R4

R1

R2

R3 R4

R2

R3 R4

(g) R2,R3,R4

R1

R2

R3 R4

R1

R2

R3 R4

(h) R1,R2,R3,R4

(full join)

Figure 4.1: All subqueries for query in Equation 4.1. Blue edges represent joins on attribute
x1. Red edges represent joins on attribute x2.

query along with the graphical representations for all subqueries not including cross products

may be found in Figure 4.1. The full query graph representation appears in Figure 4.1h.

Optimizers avoid cross products because cross products have necessarily multiplicative

size and will likely be impractically large. Instead, the optimizer wisely opts to take advan-

tage of the filtering property of each join predicate.

In Figure, 4.1, we proceed in the order typical of a bottom-up query enumeration process.

We begin with subqueries of size two (joins of base tables). These comprise Figures 4.1a,

4.1b, 4.1c, and 4.1d. In this phase the optimizer must choose which join algorithm to use if

the subquery would appear as part of the final join plan for the full query. This generally

involves the consideration of which physical join algorithm to use, which base table should

be the “inner” relation and which should be the “outer”, as well as keeping track of special

properties that are required and/or a byproduct of certain join orders. These properties

include special orderings of the output data as well as controlling the partitioning of the

70

input and output tuples. The optimizer will settle on a prospective best plan for each binary

subquery. The optimizer then proceeds by building three-table subqueries in much the same

way. These queries are detailed in Figures 4.1e, 4.1f, and 4.1g. However, for the three-table

subqueries, the optimizer will have more choices on how to construct the subquery plan

than with two-table subqueries. For example, consider the R1,R2,R3 subquery in Figure

4.1e. The optimizer can build a plan by first taking the plan for R1,R2 and then joining

the intermediate product with R3. Alternatively, it can start with the plan for R1,R3 and

then join R2. The last option is to start with the plan for R2,R3 and then join R1. Each is

a valid option and will lead to a semantically equivalent relation. But again the optimizer

must settle on a single “best” plan that it would use were that subquery to appear as part

of the final join tree. As query topology grows more complex, subqueries will also become

more complex and will likely yield several valid join plans from which to choose from. In

this way, the optimizer builds queries of size k on top of the plans it has generated for all

subqueries of size < k. At the end of the join enumeration procedure, the optimizer will have

settled on a single plan built on the plans it has generated for all possible subqueries. I.e.

the optimizer will construct a single final plan for the full query (Figure 4.1h). This dynamic

programming approach is exhaustive and is guaranteed to deliver an optimal plan assuming

the optimizer always guesses costs correctly.

Note that there exist alternatives to bottom-up join enumeration such as top-down/

transformational methods [60, 59]. Many of these systems employ heuristics to prune the plan

space; sacrificing exhaustive search for increased search efficiency and extensibility. However,

in almost all cases, the enumeration process is still predicated on the iterative application

of binary join algorithms to generate the final query output. Thus, while we focus on the

exhaustive bottom-up search, the extension to other join enumeration procedures should be

straight-forward.

71

4.1.3 Bounds Integration

Clearly, cardinality/cost estimation and join enumeration are interwoven procedures. In

this section, we describe how to replace standard cardinality estimation with our bounding

strategy. Consider the following four relation chain join expressed in datalog notation.

Q(x, y, z,w) ∶ −R(x), S(x, y), T (y, z),W (z)

Consider further the following two bounding formulas:

cR ⋅ d
x
S ⋅ d

y
T ⋅ d

z
W (4.2)

dxR ⋅ cS ⋅ d
y
T ⋅ d

z
W (4.3)

Assume that we use a partition factor of 4 for each of the x, y, z join attributes. The

associated summations for the bounding formulas in Equations 4.2, and 4.3 may be found

in Equations 4.4, and 4.5, respectively. Note that these formulas are instantiations of the

bounding formula model found in Equation 3.9.

∑
0≤hx,hy ,hz<4

cRhx ⋅ dxShx,hy ⋅ d
y

Thy,hz
⋅ dzWhz (4.4)

∑
0≤hx,hy ,hz<4

dxRhx ⋅ cShx,hy ⋅ d
y

Thy,hz
⋅ dzWhz (4.5)

However, this method repeats calculations. These repeated computations are understood

most easily when the formulas are rewritten in matrix multiplication notation. In Equations

4.6, and 4.7 we include the equivalent multiplicative matrix computation (filled in with

numeric values) for Equations 4.4, and 4.5, respectively.

72

[20 50 0 10]

´¹¹¸¹¹¹¶
cR

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 3 2

0 3 1 5

1 2 1 6

4 4 1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dxS

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 4 0

2 1 1 3

0 0 1 3

3 1 1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dyT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

0

1

5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

°
dzW

´¹¹¹¸¹¹¹¶

=[7 22 16 20]
T

= 13160 (4.6)

[1 4 0 2]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dxR

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

10 20 60 10

0 10 20 40

10 40 10 20

30 50 10 10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¸¹¹¶
cS

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 4 0

2 1 1 3

0 0 1 3

3 1 1 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
dyT

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3

0

1

5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

°
dzW

´¹¹¹¸¹¹¹¶

=[7 22 16 20]
T

= 10370 (4.7)

Note that matrix multiplication operation dyT ⋅d
z
W appears in both Equations 4.6, and 4.7.

Ideally, we should only need to run this calculation once. In some sense this is analogous

to common subexpression elimination [124]. However, for ease of implementation, this is

neglected in our initial single node prototype. Instead, we loop over all combinations of

partition index values (See Equation 3.5).

The ideal arrangement would be to integrate our bounding algorithm with the typical

join enumeration procedure. This design choice will help with ease of implementation for

other systems and followup research since modern systems already blend the join the enu-

meration and the cardinality estimation processes. This is simple because most optimizers

handle cardinality estimation by breaking the join into the logical cross product and filter

predicate operators. The cross product is calculated by taking the product of the cardinality

73

(estimates) for both sides of the join. The selectivity of the filter predicate is then estimated

by direct accesses to the base columns. However, this will cause issues when calculating our

bounds because direct column statistics likely will not match column statistics for the same

logical column in the intermediate relation. For example, the degree statistics we store for

attribute y in relation T will likely not match the statistics for attribute y in intermediate

relation T &z W . This is because following joining with W , some rows in T might not con-

tribute to any rows in T &z W while other rows in T might join with multiple rows in W .

Thus tuples can contribute to fewer or more tuples in T &zW which can effect the count and

fanout statistics. Thus, if we rely on base table stats, we risk calculating invalid bounds.

Static column statics cannot capture this. Hence we must associate richer information with

logical intermediate relations during join enumeration. The obvious solution is to compute

a new (set of) bound sketches for each intermediate relation.

At this point, the observant reader will note that not all bound formulas may be neatly

framed in terms of matrix multiplication. In fact, any join topology that isn’t an example

of a chain join will break the matrix multiplication structure. For instance, consider a star

schema join:

Q(x1, . . . , xk, y1, y2, . . .) ∶ −R(x1, . . . , xk), S1(x1, y1), . . . , Sn(xk, yk)

The relation R contains greater than 2 join attributes and neither the count nor fanout

portion of the bound sketch portion can be denoted as a matrix. Instead, it must be for-

mulated as a k-dimensional tensor where each dimension corresponds to one join attribute.

This naturally clashes with the concept of traditional 2D matrix multiplication. Another

example that breaks standard joins is where greater than two relations include the same join

attribute. Consider the following example:

Q(x, y, z,w) ∶ −R(x, y), S(x, z), T (x,w) (4.8)

74

While each relation may be encoded as a 2D matrix, matrix multiplication would force

us to sum away the x attribute when computing the bound sketch that would represent

any two-table subquery of Q. This would eliminate our ability to use the sketch for the

subquery to construct the sketch for Q since a dimension mapping to the x attribute would

be necessary to combine with the remaining third base relation. Instead of vanilla matrix

multiplication, we must fall back on the more general tensor contraction operation which

allows for summing over arbitrary finite many join attributes [25, 144]. Tensor contraction

takes m tensors T 1, . . . , Tm as input. We assume there exists a set of attributes A and each

tensor T i takes dimensions over some subset Ai ⊆ A. That is, each tensor T i has dimension

∣Ai∣. We further assume the Ai are exhaustive; ∪iAi = A. Finally, suppose there exists a

subset of attributes A ⊆ A (possibly empty) over which we marginalise (sum over). The

tensor contraction produces a new tensor of dimension ∣A∖A∣ whose entries (indexed by the

attribute set A ∖A) may be computed as follows:

XA∖A =∑
A

(∏
i

T i
Ai) (4.9)

Observe that matrix multiplication can be written as a specific instance of tensor contraction.

Matrix multiplication requires there are two input tensors of dimension two (matrices) who

share exactly one attribute. Moreover, this shared attribute is the lone member of the A

subset over which we marginalise.

Recall the example in Equation 4.8. Tensor contraction allows us to marginalise the x

attribute over all three relations R,S,T at once or can handle the inclusion of each joining

relation one by one. It does so by maintaining a set of “necessary” remaining join attributes

(i.e. those attributes that would join with other relations later on) and not marginalising

away still necessary attributes. We establish the two-dimensional tensors for each of the base

relations above. For simplicity, we abuse notation by overloading relation names to also refer

75

to the associated tensors.

[Ri,j] , [Si,k] , [Ti,`]

Let the i, j, k, ` indexes correspond to the x, y, z,w attributes, respectively. Assume the

query in Equation 4.8 is a subquery of some larger query. Assume further that the necessary

attributes are y, z,w. Therefore we wish to generate a 3-dimensional tensor to represent Q

during query optimization. Ideally, the tensor will take the form

Qj,k,` =∑
i

Ri,j ⋅ Si,k ⋅ Ti,` (4.10)

However, as we have established earlier, the plan enumeration process proceeds one additional

relation at a time. So we cannot jump immediately into a three relation join. We must first

calculate a two relation subquery with which we should be able to build Equation 4.10. For

illustrative purposes, let’s consider the subquery involving only the R and S base relations.

Q′(x, y, z) ∶ −R(x, y), S(x, z)

The bound sketch tensor for Q′ should take the form:

Q′
i,j,k = Ri,j ⋅ Si,k

Note that we do not marginalise away the i index (corresponding to the x attribute). This is

because the x attribute is the join variable for Q′(x, y, z) and S(x,w). We can now construct

the Q tensor from the Q′ and S tensors as follows:

Qj,k,` =∑
i

Q′
i,j,k ⋅ Ti,` =∑

i

(Ri,j ⋅ Si,k) ⋅ Ti,`

Thus, using careful applications of tensor contractions, we may maintain necessary sketches

76

for each subquery and fully integrate bounding into the standard exhaustive join enumeration

procedure. This integration allows the optimizer to generate bounds without repeated work

and with minimal overall changes to existing enumeration procedures resulting in faster

optimization time.

4.1.4 Further Integration Optimizations

In this section we describe further optimizations of integrating bounding into the join enu-

meration task. In particular we make a calculated decision to continue ignoring certain

bounding formulas in favor of less state stored at each logical subquery.

We first note that our bounding formula is stable w.r.t ordering of tensor contractions.

This is a byproduct of tensor contraction being an associative operation. Consider the explicit

bound calculation in Equation 4.6. The result will be the same if we begin by calculating

cRdxS, or dxSd
y
T , or dyTd

z
W . Thus, given a subquery and a bound formula for that subquery, it

would not make sense to recalculate the same bound for every possible pairing of subquery

plans that would produce the desired subquery.

We avoid this issue by only storing a count-sketch with each logical subquery plan.

Consider a subquery of size k. We first iterate over all subqueries of size k − 1 that are one

relation away from the desired subquery. We may then generate the desired bound by taking

the minimum over all bounds derived from adding the missing relation to each of the size

k − 1 subplans. Note that some size k − 1 subplans will yield repeat bounding formulas.

In this manner we will necessarily miss some valid entropic bounding formulas. In par-

ticular, we will miss any bounding formula where the associated entropic formula features

multiple relations that cover their attributes unconditionally. This translates to only consid-

ering cardinality bounding formulas with a single count statistic. This is a heuristic choice

but will almost certainly not affect the overall minimum bound. When considering acyclic

joins, having multiple count statistics will guarantee the appearance of cross products (direct

or indirect multiplication of count statistics) in the bounding formula. Similar to how typical

optimizers eschew cross products because they generally lead to large intermediate products,

77

it is unlikely that a multi-count-statistic bounding formula will be tighter than competing

single-count-statistic bounding formulas. Thus, this heuristic choice is highly unlikely to

affect the performance of our bounding formula in practice. Note that the above procedure

of gleaning a minimum count sketch for a query of size k from the count sketches of all sub-

queries of size k − 1 is guaranteed to cover all single count statistic bounding formulas. This

is done either explicitly, or implicitly via the same minimization that occurred for smaller

subqueries.

There are two primary benefits to unifying our bound partitioning and associating a

single count sketch with each logical plan. The first is that less data needs to be stored per

logical plan. In our previous implementation, there would exist a single partition budget

which could dictate different partitioning allotments for each bounding formula. For each

relation, each unique partition budget allotment with respect to that relation would require

a single count sketch and one degree sketch per join attribute. Instead, we now store a single

count sketch per subquery and all degree statistics are integrated in from base relations. Their

tensor contraction would again represent another count sketch to be stored with the resulting

plan. While this may at first seem like a move towards greater memory utilization for each

subquery, note that these sketches would still have to be calculated in our previous bound

calculation model. The difference is that the sketches associated with common subqueries

would often be recalculated several times. We are therefore trading slightly more storage

overhead for significantly greater computational efficiency.

The second primary benefit is finer tuned minimization. That is, we may now return to

localized minimization over logical partitions of the underlying data. Consider the following

chain join query and subquery:

Q(x, y) ∶ −R(x), S(x, y), T (y)

Q′(x, y) ∶ −R(x), S(x, y)

Assume that both attributes x, y have a partition budget of 2. Assume further that the

78

count and fanout (with respect to x) tensors for relation R and S appear as follows:

cR = [1 99] , dxR = [1 1] , cS =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 99

1 99

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, dxS =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Let’s consider the count sketch that we may produce for R &x S = Q′ by using the bound

formula cRdxR versus the count sketch that produced by dxRcS:

cRd
x
R = [1 99]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 1

1 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [100 100]

dxRcS = [1 1]

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 99

1 99

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= [2 200]

It isn’t immediately clear which count sketch is better. Depending on the distribution of

values in the dyT tensor, either could be a superior candidate to store with the Q′ subquery

during join enumeration. However, we observe that both tensors describe the same parti-

tioning of the Q′ intermediate relation. Specifically, the first position count statistic in the

tensor derived from formula cRdxR as well as the first position count statistic in the tensor

derived from formula dxRcS are both bounds on the number of tuples in Q′ whose y attribute

hashes to 0. Similarly, the second position count statistic in the cRdxR as well as the second

position count statistic in the dxRcS are both bounds on the number of tuples in Q′ whose

y attribute hashes to 1. Thus we may take the element-wise minimum of both tensors to

create the final tensor for cQ′ :

cQ′ = min (cRd
x
R, d

x
RcS) = min ([100 100] , [2 200]) = [2 100]

In effect we allow each logical partition of Q′ to pick whichever bound formula happens to

work best independent of other logical partitions. The left position chooses cRdxR, and the

79

right position chooses cRdxR. In more detail, by decoupling a partition budget from a specific

bound formula along with restricting intermediate products to only store count sketches and

not degree sketches, we recapture the fine grained minimization that we sacrificed in our first

iteration described in Chapter 3. Thus we get to keep the best-of-both-worlds from both the

bound formula in Equation 3.5, as well as the bound formula in Equation 3.9.

4.2 Distributed Fanout

The natural follow-up to improved optimization time is the ability to scale. That is, how can

the bounds approach be generalized to large scale distributed database settings? We take

this to mean that base relations are horizontally partitioned; the rows from a single relation

are partitioned across multiple nodes. This is generally a solution to massive datasets that

cannot fit on a single server. This is in contrast to vertical partitioning where different

columns are stored on each server. We often refer to such a subset of rows residing on the

same node as a shard. The major mechanical issue comes from the calculation of the max

degree/fanout statistic. Unlike the simple count statistic, which is a linear function, the max

degree statistic would require a full distributed grouped aggregation to calculate exactly.

What this may look like is that each shard of a dataset would need to calculate a count

for each attribute value present in the shard and then transmit the results of the grouped

aggregation over the network to its neighbors. In the worst case, the number of distinct values

would be on the order of the size of the entire dataset, in which case the grouped aggregation

is essentially a full data shuffle. A data shuffle is a re-partitioning of all rows from a single

relation to a new node. Often this re-partitioning is in preparation for a distributed hash join

and mapping of a specific row to a specific node follows the associated hash function. Note

that using partitioning will also increase the number of groups in the distributed aggregation

since a separate aggregation will need to be executed for every logical partition of a relation.

If a relation contains greater than one join attribute, then tuples with the same value for

one column may end up sorted into different logical partitions based on the value of other

join columns. This is obviously prohibitively expensive when all the bounding method really

80

requires is the max of the grouped counts; the max degree.

The clear solution is to fall back on classical frequent item data sketches. The first

major category of such sketches are counter-based sketches such as the Misra-Gries, lossy

counting, space saving, and unbiased space saving sketches [106, 104, 100, 136]. This family

of sketches provides absolute error bounds and members of the family are known to perform

better empirically than their theoretical analysis would suggest. The second major category

is linear sketches such the count-min, AMS, and count sketch [44, 8, 34] which can handle

deletions but require greater computation to generate a max frequency approximation. A

major caveat is that our upper bounds are no longer guaranteed. Instead, sketch based

aggregation implies that we are using estimates of theoretically guaranteed upper bounds.

Still, the fact that we target one-sided error still makes underestimation highly unlikely.

The final consideration to choosing a distributed max degree estimation sketch is the

sketch’s merging performance. We argue that counter-based sketches hold the upper hand

over linear sketches. Linear sketches feature straightforward merging thanks to a common

internal hash functions used to create sketches locally at each shard. However, it is likely

that the transmitted sketch would be prohibitively expensive as it would have to have the

same dimension as the ideal sketch that would be constructed on the full logical dataset

and not on each individual shard. For the count-min sketch, compression such as run length

encoding may be an option. However, data shards will often still produce dense count-min

sketches and the storage savings from zero-runs will likely not cover the cost of compression

ahead of transmission and decompression following transmission. The AMS sketch and count

sketch, similar in architecture, would likely not benefit from compression as each data item

will issue an update to each position in the sketch. Counter based sketches provide an

equally intuitive merging process with arguably less network usage. However, they lack the

same clean error guarantees following the merging process. This merging process is relatively

straightforward as the sketch contributed by each shard will take the same form. That is,

each shard contributes a list of attribute values that are frequent on that shard along with

approximated counts. A set of sketches may be merged by simply concatenating all lists and

81

value count

seattle 100
san francisco 50
atlanta 10
vancouver 5
new york 5
austin 1

(a) Shard 1 MG sketch

value count

new york 100
san francisco 100
london 50
miami 10
seattle 5
austin 1

(b) Shard 2 MG sketch

value count

san francisco 150
seattle 105
new york 105
london 50
atlanta 10
miami 10
vancouver 5
austin 2

(c) Merge MG sketches from
shards 1, 2

Figure 4.2: Misra-Gries sketch merge example

summing any counts that are associated with the same attribute value. An example merging

of two Misra-Gries sketches may be found in Figure 4.2. In this example the merge of the

two sketches is not pared down to a given budget. Instead, all pairs are maintained in the

merged sketch. Merging without dropping lower rank attribute values is generally paired

with a single round of merging; all shards send their sketches to a single aggregating node;

in this case it is assumed that the merging node has sufficient memory to store all incoming

sketches. Alternatively, merging with dropping lower rank attribute values is generally paired

with multiple rounds of merging; usually following a bottom up approach on a tree. It is not

clear which blend of approaches is the outright superior for the purposes of approximating

max degree but the simplicity of a single round of aggregation makes it most attractive.

Observe that for all datasets featuring logical partitioning, a sketch will need to be con-

structed for each logical partition. This will add to memory and network usage. For example,

consider a single shard from some two join attribute relation R. We include an illustration

where R’s logical partitioning is depicted as a k × k matrix. Each logical partition will

82

contribute a single sketch.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sketch(R(0,0)) ⋯ Sketch(R(0,k−1))

⋮ ⋱ ⋮

Sketch(R(k−1,0)) ⋯ Sketch(R(k−1,k−1))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Note that for both counter-based and linear sketches, the greatest challenge comes from

overall low skew data where noise is proportional to the size of the entire dataset and may

result in relative error far beyond the actual magnitude of the true max degree. The best case

scenario is to have data pre-partitioned based on join attributes. This is common practice

since distributed hash joins would otherwise require reshuffling data to achieve the same

physical partitioning. If logical partitioning for bounding matches physical partitioning,

then the variance of the max degree estimators will be greatly decreased and in some cases

distributed aggregation of sketches may be avoided entirely.

4.3 Adaptive Execution

Adaptive query optimization (AQO) has become a mainstay in production distributed sys-

tems. In brief, AQO allows for plans to be modified in the middle of execution. That is, there

exists a feedback loop between the optimizer and the execution layers where accurate statis-

tics from the executor can be used to affect the query plans moving forward [75, 19, 4, 35].

AQO can thus be considered a sibling technique to using bounds since both methods aim to

achieve a more robust query plan. While using bounds focuses on avoiding disastrous plans

by starting conservative and assuming a worst case scenario plan, AQO allows the DBMS

to pivot or even backtrack during execution. Note that plan adaptivity is not as simple as

rearranging the nodes higher up the physical join tree. This is because the execution of a

physical plan is not normally executed on a node-by-node or physical-operator-by-physical-

operator basis. Instead, operators are pipelined to improve efficiency and avoid the cost of

materializing intermediate products [112]. When an operator requires a full materialization

83

or more generally when an operator needs to be completed before proceeding to the next

operator, this is known as a pipeline breaker. Pipeline breakers are extremely helpful for

re-optimization techniques as these actions represents natural pauses where the completed

subtree can be neatly rooted without any wasted work. Pipeline breakers are thus the natural

points during execution for adaptive execution.

Luckily, AQO and bounding do not directly contradict each other and allow for relatively

easy combination. In this section we discuss considerations for using both approaches in

tandem. There are two general approaches to combining bounds and adaptivity. The first is

to start aggressive and then transition to a more conservative plan. Alternatively, one may

start conservatively using bounds and then see how severely the optimizer overestimates.

If explicitly calculated cardinalities suggest that the optimizer was overly conservative, the

executor may pivot to a more aggressive plans higher up the tree.

We first consider the aggressive-to-conservative approach. This would involve allowing the

optimizer to fall back on strong assumptions about the underlying data for initial plan cre-

ation. The optimizer could then use bounds later on in the more smaller subquery bounding

tasks. Use of bounds could also be triggered if the execution layer encounters unexpectedly

large intermediate relations during runtime. One could argue that this is an ideal scenario

as it will likely work well for the majority of queries. This is because both conservative

and aggressive plans will likely perform similarly on these “easy” queries but conservative

plans would involve more up front work and hence more work overall. Examples include

data reshuffling/partitioning, sorting, and/or the collection of more in-depth statistics. If

the execution went unnecessarily down an overly conservative path, these operations would

be time and resource intensive wasted work. On the other hand, if the optimizer is overly

aggressive and chooses a plan that might lead to catastrophic intermediate result blow-up,

it is probable that the execution will need to start over and scrap any intermediate product.

This is particularly dangerous if the system is allowed to progress up the join tree, dedicating

significant time and resources to a suboptimal plan.

The key to aggressive-to-conservative adaptive plans then is being able to adapt early at

84

these natural break points. This is a promising direction since the execution of leaves in a

distributed setting often involves the application of filters and shuffling data appropriately

ahead of initial join operators. In this case we will be able to collect necessary statistics

to perform pessimistic cardinality estimation in parallel with these base table operators

thus amortizing the optimization cost. Note that not all of the statistic collection will be

perfectly amortized since there will be a necessary round of message passing where the

statistics/sketches are aggregated. This message-passing round might not always be masked

by existing shuffles in the query plan. However, even in the non-amortized scenario these

messages should be relatively cheap as the data structures are designed to be highly compact.

One challenge is that the original aggressive plan is built on an entirely different collection of

cardinality parameters compared to the bounds. This might prompt pivoting to a completely

different –now pessimistic– query plan from the plan originally started by the executor. The

challenge can then be boiled down to the problem of transitioning gracefully to a pessimistic

plan but not being overly eager to do so and in turn discarding previously performed work.

The second option is to begin with conservative plans and allow the optimizer to make

more aggressive decisions if it becomes clear during execution that the optimizer was overly

conservative. We call this the conservative-to-aggressive approach. This is a tempting model

as many systems solidify a join order during initial optimization and only use adaptive

execution to modify access patterns for base relations. This is the case of our target system,

Spark. Spark employs a volcano style optimizer where the physical plan is optimized using

transforming rules [149, 59, 60]. A rule to implement subquery join reorders would be

complex and expensive. As such, dynamic join reordering is not yet enabled in the Spark

catalyst optimizer. Given these limitations, we believe that it would be best to focus on

this scenario: use bounds to settle on a conservative and safe join order while allowing the

adaptive capabilities of Spark to pivot to faster access paths and physical join algorithms if

it deems it necessary.

85

4.4 Conclusion

In this chapter we address key shortcomings of our initial pessimistic query optimization

prototype. Furthermore, we discuss the challenges of shifting from a single node architecture

to a distributed setting. The primary challenge we face is an unacceptably long optimization

time associated with using entropic bounds. We address optimization time by demonstrating

how bounding may be more tightly integrated into the standard join enumeration process

as well as how to handle ad hoc filter predicates. We continue by discussing how one may

maintain the necessary count and degree statistics in a distributed setting. Finally, we briefly

discuss how bounding might interact with a sibling method; adaptive execution.

86

Chapter 5

THRESHOLD FUNCTIONS OVER STREAM JOINS

Joins over two or more data streams are ubiquitous in many applications. Most exist-

ing data stream management systems (DSMS’s), such as Apache Spark [14] and Apache

Flink [28], all support stream joins. Typical join processing techniques are the classic sym-

metric hash join algorithm and its variants [55], which need to buffer intermediate join

state in main memory. This raises challenges when processing stream joins with memory

constraints, e.g., Internet of Things (IoT) applications that run on edge devices such as

Raspberry Pi or cell phones, or when the join state is very large [11].

In this chapter, we study one common class of stream queries in practice, namely applying

a threshold function over a stream join to compute an alert. Our main observation is that

if the threshold function satisfies the mathematical property of quasiconvexity, then we can

drastically reduce the memory required for the join. Our technique omits tuples from the

input streams without affecting the query result.

Consider machinery on a manufacturing assembly line. A common requirement is that

machines remain dry, since water would interfere with their operation. To detect when

equipment is in danger of collecting moisture, the maintenance staff monitors three sensors:

relative humidity h, air temperature a, and surface temperature s. The sensors emit mea-

surements for these values in three separate data streams H,A and S. Values from these

streams are then combined using the Magnus Formula [130]:

φ = ln(
h

100
) +

18.678a

257.14 + a
− s (5.1)

If φ exceeds 0, the surface temperature of the machinery has dropped below the dew point of

87

the air. This implies water will condense at a higher rate than it evaporates, causing water

to collect on the surface of the machinery. This should trigger an alarm.

The Magnus formula should be applied to triples of sensor readings that are within a

time window of each other, that is, tuples in the result of a temporal join. For example, if

the window size is ten seconds and stream elements s ∈ S, h ∈ H, and a ∈ A are within ten

seconds of each other, then the function should be applied to the triple of readings [s, h, a]

to determine if they exceed the dew point threshold.

Our primary observation is that for a broad class of threshold functions we do not need

to keep all tuples. Many tuples can simply be omitted without any knowledge of tuples from

other streams and without ever missing an alarm.

During normal operation, the memory savings from omitting these tuples is significant,

because the factory may have thousands of machines, each with its own sensors. The savings

is also important during abnormal operation. For example, suppose that the humidity sensor

output significantly lags the machines’ surface-temperature sensor output. Then the DSMS

needs to cache all of the surface temperature readings following the most recent humidity

reading until their corresponding humidity readings arrive. This costs memory. Also, when

the humidity readings finally arrive, the DSMS’s catch-up processing risks a delay in trig-

gering the alarm. Even worse, if the cached surface temperature readings overflow memory,

the system might crash and alarms that should have been raised are permanently lost.

If tuples are only needed to trigger the alarm, then our technique can be used to filter

them out on an edge device, thereby avoiding the expense of sending them to a datacenter.

However, sometimes it may be necessary to capture all tuples in persistent storage for later

analysis. In this case, even though all tuples must be read in, most of them can be streamed

immediately to storage. Only the small number that are needed for the threshold calculation

will consume main memory for a non-negligible time period.

To illustrate this intuition, consider a simple case where we have only two streams R&S

and the threshold formula is f(r, s) = r + s. Assume that tuples r ∈ R and s ∈ S join if their

timestamps are within a time window of length ω/2 from each other. This is known as an

88

Figure 5.1: Simple tuple omission depiction.

interval join and is explained in detail in Section 2.5.1. Suppose that R sees a sequence of

tuples (t, v), where t is a timestamp and v is the value of a sensor reading.

r0 = (t0, v0), r1 = (t1, v1), r2 = (t2, v2)

Assume that t0 < t1 < t2, {r0, r1, r2} are within ω of each other (i.e., t2 − t0 ¡ ω), v1 < v0,

and v1 < v2. (See the bottom of Figure 5.1.) Observe that if r1 joins with a tuple s from

stream S, then s must join with at least one of r0 and r2. Since r0 carries a higher value, if

f(v1, s) = v1 + s > T , then f(v0, s) = v0 + s > v1 + s > T . (See the top of Figure 5.1.) Similarly

for r2 and f(v2, s). Since at least one of r0 & s and r2 & s will be passed to the threshold

function f , r1 is redundant. That is, if we omit r1, an alarm is still raised and the monitoring

system still accomplishes its goal. The remainder of this chapter formalizes and generalizes

this simple intuition.

Our contributions are as follows

1. We show that for a large class of threshold functions over the result of a temporal join

of two streams, the system needs to retain very few tuples per-data-stream in each

89

time interval yet never miss a alarm.

2. We prove that our technique is optimal in the sense that it deletes as many tuples as

possible.

3. We generalize our technique to multi-stream joins and show for which join topologies

it does and does not work.

4. We provide experimental evidence that validates the technique’s substantial memory

savings.

The chapter is arranged as follows. Section 5.1 describes our omission algorithm in greater

detail as well as its limitations. Section 5.2 generalizes our omission algorithm to the multi-

stream join environment. Section 5.3 explores the question of automatically checking if a

threshold function is amenable to our omission algorithm. Section 5.4 reports on experiments

that evaluate our method against synthetic and real world workloads. Section 2.5.2 discusses

past work and how it relates to our contribution.

5.1 Method

The basic form of our problem is as follows: We are given two streams R and S. Each tuple

of R takes the form r = (tr, vr) where tr is the event time and vr is the value. Similarly, each

tuple of S takes the form s = (ts, vs). We are also given a function f ∶ R × R → R where f

ingests values taken from an interval join R & S. Our goal is to trigger an alarm whenever

there exists some tuples r ∈ R and s ∈ S that join and f(vr, vs) > T for a given threshold T .

Going forward, we will often abuse notation and write f(r, s) instead of f(vr, vs).

Our primary observation is this: if f is quasiconvex w.r.t. S, and there exist tuples

s1, s2, s3 ∈ S each of which joins with some tuple r ∈ R, then we may omit the tuple of S

with middle value. That is, if vs1 ≤ vs2 ≤ vs3 then as far as tuple r is concerned, we may omit

s2. The reason is that quasiconvexity guarantees that if f(s2, r) > T , then at least one of

90

f(s1, r), f(s3, r) also exceeds T and an alarm will be raised even with s2 omitted. Stated

formally, if f is quasiconvex w.r.t. S, then

f(s2, r) > T Ô⇒ (f(s1, r) ≥ f(s2, r)) ∨ (f(s3, r) ≥ f(s2, r)).

This observation generalizes to a sufficient condition for omitting tuples from the main-

tained state of S independent of any specific tuple from R: for all tuples s ∈ S, if there exists

a pair of tuples that occurs before and after s, have values greater than vs, and occur within

ω of each other, and similarly there exists a pair of tuples that occurs before and after s,

have values less than vs, and occur within ω of each other, then we may omit s from S’s

cache. We call this tuple s doubly bracketed. This suggests a policy for reducing the amount

of memory by deleting tuples that are doubly bracketed.

This observation can be specialized for monotonic functions. In this scenario, a singly

bracketed tuple may safely be omitted. More specifically, if the function is monotonic in-

creasing (decreasing) we may omit any tuple that is bracketed by two tuples with greater

(lesser) value.

Is this omission criterion “optimal”? That is, is the ability to omit future tuples unaffected

by omitting a tuple s? The answer is yes. Before proving it Section 5.1.3, we define some

useful terminology and present the algorithm for omitting tuples.

5.1.1 Terminology

Intuitively a tuple s is above bracketed if there exist tuples before and after s whose values

are greater than vs. We formalize this and related concepts in the following definitions.

Definition 5.1.1 (Above/Below Bracketed). A tuple s is above (resp. below) bracketed iff

there exist tuples se, s` s.t.

1. tse < ts < ts`

2. vse , vs` > vs resp. (vse , vs` < vs)

91

3. ts` − tse ≤ ω

(I.e., e and l are shorthands for “earlier” and “later”.) Tuples se, s`, are called an above

bracket (resp. below bracket). We refer to a quartet of tuples that form an above and below

bracket of the same tuple as simply a bracket.

Definition 5.1.2 (Maximal/Minimal). A tuple s is maximal (resp. minimal) iff there exists

an interval I of length ω containing s where for all tuples s′ ∈ I, vs ≥ vs′ (resp. vs ≤ vs′).

Definition 5.1.3 (Maximally/Minimally Bracketed). A tuple s is maximally (resp. mini-

mally) bracketed iff there exist tuples se, s` s.t.

1. tse < ts < ts`

2. vse , vs` > vs (resp. vse , vs` < vs)

3. ts` − tse ≤ ω

4. s` and se are maximal (resp. minimal)

An above bracketed tuple cannot be maximal because any window containing s would also

have to contain se and/or s`, implying that s is not maximal in that window. Equivalently,

any maximal tuple cannot be above bracketed. Similarly, no below bracketed tuple can be

minimal.

5.1.2 Greedy Algorithm

Algorithm 3 presents a greedy approach to omitting tuples using the above reasoning. As

tuples arrive from the input stream, they are inserted into a generic tuple store (T S). In

most cases, the store will sort the entries on event time. If we regard the T S as sorted left-

to-right with newest (highest timestamp) elements on the right, we can use left and right as

synonyms for earlier and later.

92

We assume that T S provides a generic T S.search(t) function that provides a pointer to

the element in T S with largest timestamp ≤ t. If T S allows duplicate timestamps, then we

arbitrarily break ties by the stored value and T S.search(t) returns the “first” such tuple.

Each tuple is stored in T S with four additional attributes: lbs, las, rbs, ras. They denote

the time difference between the given tuple s and the chronologically closest known tuple on

its left with value below, left with value above, right with value below, and right with value

above, respectively. These values are initialized to ∞ at line 5 in the pseudocode.

When a new tuple s arrives, we probe the tree using the tuple’s timestamp. Assuming

T S allows duplicate timestamps (i.e., not a red-black tree), we first check any tuples that

may have the same timestamp (lines 7 - 16). We then traverse left (lines 19 - 26) and right

(lines 29 - 36) searching for above and below bracketing pairs. If s completes a bracket for

a tuple in T S, then the newly bracketed tuple is dropped from T S. If the probe reveals a

bracket of s that already exists in T S, we omit s.

The pseudocode assumes the use of doubly-closed interval boundary semantics. For

doubly-open interval boundary semantics, swap ≤ / ≥ for < / > (or vice-versa) at lines 19,

29 in Algorithm 3, and line 2 in Algorithm 4. We discuss mixed boundary interval join

semantics in Section 5.1.4.

5.1.3 Global Optimality of Greedy Algorithm

Algorithm 3 omits a tuple when it finds an above bracketing pair and a below bracketing

pair of neighboring tuples. We want to verify that doing so will not harm our chances of

omitting other tuples later. First, we will consider above bracketing tuples when deciding

whether to omit the tuple. It will become clear that a symmetric argument holds for below

bracketing pairs and that the conditions may be considered separately. We simply evaluate

the conjunction of both conditions to decide on omission.

Theorem 5.1.1. Algorithm 3 leads to a globally optimal state.

It is sufficient to prove that if a tuple is above bracketed, then it is also maximally

93

Algorithm 3 Maintains a minimal collection of necessary tuples from stream S.

1: procedure Greedy(S)
2: T S ← Store[t, v, la, lb, ra, rb]() ▷ empty tuple store
3: while S.has next() do
4: s← S.next()
5: las, lbs, ras, rbs ←∞

6: s′ ← T S.search(ts)
7: while ts = ts′ do
8: if vs′ = vs then
9: continue ▷ s is duplicate of s′: omit s.
10: else if vs < vs′ then
11: las, ras, lbs′ , rbs′ ← 0
12: if Bracketed(s′) then T S.remove(s′)
13: else
14: lbs, rbs, las′ , ras′ ← 0
15: if Bracketed(s′) then T S.remove(s′)

16: s′ ← succ(s′)

17: s′ ← T S.search(ts)
18: if ts = ts′ then s′ ← prev(s′)
19: while (las =∞∨ lbs =∞) ∧ ts − ts′ ≤ ω do
20: if vs < vs′ then
21: las, rbs′ ←min(las, ts − ts′),min(rbs′ , ts − ts′)
22: if Bracketed(s′) then T S.remove(s′)
23: else if vs > vs′ then
24: lbs, ras′ ←min(lbs, ts − ts′),min(ras′ , ts − ts′)
25: if Bracketed(s′) then T S.remove(s′)

26: s′ ← prev(s′)

27: s′ ← T S.search(ts)
28: while ts = ts′ do s′ ← succ(s′)
29: while (ras =∞∨ rbs =∞) ∧ ts′ − ts ≤ ω do
30: if vs < vs′ then
31: ras, lbs′ ←min(ras, ts′ − ts),min(lbs′ , ts′ − ts)
32: if Bracketed(s′) then T S.remove(s′)
33: else if vs > vs′ then
34: rbs, las′ ←min(rbs, ts′ − ts),min(las′ , ts′ − ts)
35: if Bracketed(s′) then T S.remove(s′)

36: s′ ← succ(s′)

37: if ¬Bracketed(s) then
38: T S.insert(ts, vs, las, lbs, ras, rbs)

94

Algorithm 4 Checks if tuples s is bracketed

1: procedure Bracketed(s)
2: if las + ras ≤ ω ∧ lbs + rbs ≤ ω then
3: return True
4: else
5: return False

bracketed, because any above bracketed tuple must have an above bracketing pair of tuples

both of which are maximal. Since a maximal tuple cannot be above bracketed, it will never

be omitted. This implies that the maximal tuples will always be available to above bracket

the original tuple in question, and thereby justify its omission.

Lemma 5.1.2. A tuple is above bracketed iff it is maximally bracketed.

The reader may skip the proof of Lemma 5.1.2 without having it detract from under-

standing the rest of the chapter.

Proof. Assume that we are using closed interval semantics. The proof for open interval

semantics is nearly identical. In the proof, we will refer to above bracketed tuples simply as

bracketed. If two tuples have equal value, we arbitrarily choose the later one to have the

“higher” value. Trivially, maximally bracketed implies bracketed. It remains to prove that

bracketed implies maximally bracketed. The proof is constructive. Suppose that there exists

a bracketed tuple ŝ with bracketing pair s1, s2. Define two sequences of tuples a0, a1, a2, . . . ,

and b0, b1, b2, . . . that extend backwards and forwards in time from ŝ. Let a0 = b0 = ŝ. For

i > 0 let ai be recursively defined as the latest element earlier than ai−1, and later than tŝ−ω,

with value greater than ai−1. More formally, for i > 0:

ai = argmaxs∈S {ts∣tŝ − ω ≤ ts < tai−1 , vs > vai−1}

Similarly for bj where j > 0:

bj = argmins∈S {ts∣tbj−1 < ts ≤ tŝ + ω, vs > vbj−1}

95

(a) {ai} and {bj} sequences. (b) {Ik} sequence.

Figure 5.2: Visualization of constructive proof.

A visualization of these sequences is in Figure 5.2a. Other tuples may appear in the time-line

but not all tuples end up as elements of {ai} or {bj}. Although the bracketing pair s1, s2

might not actually be elements of the {ai},{bj} sequences, the existence of s1, s2 guarantees

that the sequences are nonempty and tb1 − ta1 ≤ ω.

We construct a sequence of intervals and associated heights starting with whichever of

a1 or b1 has a lesser value. WLOG assume it is a1. The first interval under consideration

is I1 = [ta1 , ta1 + ω] with initial height va1 . Intervals (and heights) are recursively defined as

follows: If there exist values from the opposite tuple sequence that fall inside the interval Ik,

and whose value exceeds hk, then we select the closest (with respect to time) such tuple as

the new starting point for Ik+1 and set the new height hk+1 as the value of said tuple. If the

opposite tuple sequence is {ai}, we choose the latest such ai. If the opposite tuple sequence

is {bj}, we choose the earliest such bj. By construction of the {ai},{bj}, the tuple that is

time-wise closest value to ŝ on the opposite side of ŝ must be a member of either {ai} or

{bj}. See Figure 5.2b.

Note that hk is a strictly increasing sequence of values with upper bound

max(max
i

(ai),max
j

(bj))

96

. Thus there must exist some final interval I ′ (with height h′) where there does not exist

tuples on the opposite side of ŝ that exceed h′. WLOG assume I ′ is anchored on an element

a′ of {ai}. In Figure 5.2b, this interval is I5 with anchor a′ = a4 and height h′ = va4 . By

construction of the {Ik} sequence, the interval contains ŝ and must contain at least one

element b′ of {bj}. This is because the previous interval was anchored at a point b where a′

is within ω of b. (In Figure 5.2b, this tuple is b′ = b4.) By construction, a′ and b′ form a

bracketing pair on ŝ. Furthermore, a′ is maximal on the interval I ′. It remains to prove that

b′ is also maximal. Consider the interval I ′′ = [ta′ +δ, ta′ +ω+δ] where we choose δ sufficiently

small that no tuples appear in the intervals (ta′ , ta′ + δ] and (ta′ + ω, ta′ + ω + δ]. This is

only guaranteed possible when using doubly-closed, or doubly-open join interval boundary

semantics. When using mixed interval boundaries (left-closed-right-open, left-open-right-

closed), the existence of such a δ is not guaranteed. Section 5.1.4 presents a counterexample

to Theorem 5.1.1 when using mixed boundaries, along with further discussion.

We wish to show that b′ is maximal in I ′′. By construction, there cannot exist any tuples

to the right of ŝ whose value is greater than vb′ . Assume towards contradiction that there

exists some a′′ that lies inside I ′′ and whose value exceeds vb′ . This would imply that a′′

lives in the most recent interval anchored at a tuple from {bj}. Call this tuple b′′. We have

va′′ > vb′ Ô⇒ va′′ > vb′′ . We know that such an interval exists in {Ik} since we began

anchoring at the lower of a1 and b1 and hence at least two intervals (at least one anchored

from both {ai} and {bj}) are in the sequence {Ik}. In Figure 5.2b, this tuple is b′′ = b3.

This is a contradiction because it would imply that a′′ should have been chosen to anchor

I ′ instead of a′. Recall the anchors for the {Ik} based on closest (w.r.t. time) higher value

in the opposite sequence, not simply the highest. Therefore, no such a′′ can exist. In more

detail, no element to the left of ŝ in the interval I ′′ may exceed vb′ and thus b′ is maximal

in I ′′. Hence a′ and b′ are both maximal in some interval and form a maximal bracket on

ŝ.

97

Figure 5.3: Mixed boundary counter example.

5.1.4 Mixed Boundary Interval Semantics

We present a counter example to Theorem 5.1.1 when using mixed boundary interval seman-

tics. Let the join interval be over a left-closed-right-open interval with ω = 3. Our workload

consists of 5 tuples (see Figure 5.3):

s0 = (0,3), s1 = (1,1), s2 = (2,0), s3 = (3,2), s4 = (4,4)

We wish to justify the omission of s2. The interval I = [0.5,3.5) and pair s1 and s3 imply

s2 is above bracketed. It remains to show that s2 is not maximally bracketed. Clearly, with

value 1, tuple s1 is not maximal: any interval containing s1 must contain either s0 or s3.

Therefore any maximal bracketing of s2 must involve s0. However, no interval exists that

contains both s0 and the closest tuple right of s2, namely s3. Therefore no maximal bracket

exists and the statement of Theorem 5.1.1 fails. This workload also yields a counter example

for left-open-right-closed interval join semantics.

We emphasize that it is still “safe” to deploy our omission policy here. It just lacks

a guarantee of global optimality. However, the practitioner should be confident that the

retained tuples are extremely close to optimal, although not easily provably so. We may

simply pretend that the query is operating under doubly-open interval boundary semantics

and omit tuples based on this assumption. For example, if the semantics are left-closed-right-

open with interval length ω, we execute our omission strategy based on left-open-right-open

98

interval of length ω. This might lead to slightly more tuples being retained than necessary,

but the system will not suffer any false negatives while still omitting many tuples.

5.1.5 Further Discussion

We wish to highlight a few additional aspects of our greedy approach. First, our algorithm

is robust to out-of-order streams. This is true both in terms of delay differences between two

streams and out-of-order behavior within the same stream. In the different streams scenario

two tuples r, s from different streams arrive out of order. That is, we have tr < ts but s

arrives ahead of r due to differences in stream latency. It is less obvious how tuples from

the same stream may arrive out of order, but it is certainly possible, e.g., if a single logical

stream is the union of multiple physical streams.

Second, our omission algorithm may be pushed down to the emitter. This saves network

bandwidth, not just memory usage. Furthermore, in the event of a network failure the

memory required to cache results before delivering them to the central processing node

would be significantly reduced. This extends the state savings benefits across the entire

system.

Finally, while we focus on joins, our omission policy may be applied in a setting where a

single stream provides input parameters to the function. However, if the threshold function

is quasiconvex, the calculation of the function is likely to be relatively simple, in which

case it is efficient simply to execute the function at the edge node and skip any kind of

state management. Still, if the execution of the function is an external service or otherwise

”expensive”, then our method may again be useful.

5.2 Generalization to Multijoins

This section generalizes our strategy to multijoin settings. In the two stream scenario,

Algorithm 3 may be applied to a single stream independent of the join partner and relying

only on knowledge of the interval size ω. This is because the options for join predicates

are highly limited. With more streams the choice of join topology is more complex, so the

99

omission policy must be applied with greater care.

Consider the chain joins defined by the SQL query in Figure 5.4a. Streams R and U

directly join to S but not to each other. This relationship is depicted in Figure 5.4b. It

is not safe to omit a bracketed tuple from the state of stream S using Algorithm 3. For

example, suppose tuple s is bracketed by s′ and s′′ and thus omitted. Tuple s′ fails to join

with r while tuple s′′ fails to join with u. The omission of s has led to no joined output

tuples being delivered to the threshold function.

However, it is still possible to apply the omission policy to tuples from streams R and U .

This is because they do not have to worry about the intersections of multiple intervals.

In general, we may omit tuples from any peripheral streams in the join topology, that

is, any stream that is temporally joined directly with only one other stream. Conversely, a

stream is internal if it is temporally joined to more than one other stream.

SELECT f(R.v, S.v, U.v)

FROM R, S, U

WHERE |R.t - S.t| <= 1

AND |U.t - S.t| <= 1;

(a) Multistream query SQL.

(b) Multistream interval intersection.

Figure 5.4: Multistream Query.

This suggests that join topologies heavily influence the applicability of our omission policy.

For instance, a chain join only allows tuples from the two end streams to be omitted while

100

all internal streams must be cached in full (see Figure 5.5b). However, such a chain join in

the context of streams seems unlikely, since the timestamps from contributing base tuples

might stretch unnaturally over the event-time space. An alternative is a star join topology

where one stream is chosen to be the internal center of the star while all other streams are

peripheral (see Figure 5.5c). The star query allows the application of our omission policy on

all but the central stream, potentially a major savings.

Arguably the most natural join topology is where every pair of tuples contributing to a

join output must be within ω of one another1, that is, a clique query (see Figure 5.5a). One

might expect a clique to be the worst case join topology for our omission policy, since there

are no peripheral streams. Surprisingly however, in a clique query our omission algorithm

may be applied to every stream!

(a) Clique. (b) Chain. (c) Star.

Figure 5.5: Applicability of our omission policy across different join topologies. Streams
highlighted in red may omit tuples safely.

We define the neighborhood of a stream S in a join topology to be set of all of streams

with which S joins directly. For any query topology, our omission policy may be applied

to every stream whose neighborhood is a clique. That is, for any stream S, for any pair

of distinct streams S′, S′′ where S joins with S′ and S′′ directly, then S′ and S′′ must join

1We switch from pairwise distance ω/2 to ω in the multijoin scenario. The two stream scenario is a
special case where we are allowed to omit tuples using intervals whose length is twice the pairwise distance
bound.

101

directly as well in order to omit tuples from S. We formalize this statement in the following

Theorem and Corollary.

Theorem 5.2.1. Algorithm 3 may be applied safely to every stream whose neighborhood in

the join topology is a clique.

Corollary 5.2.1.1. Algorithm 3 may be applied safely to every stream in a clique query.

In order to prove this we start with a short lemma.

Lemma 5.2.2. Consider a clique query Q = (&iSi), where all joins are interval joins over

an interval of length ω. For every output (&isi) of Q, there is an interval I of length ω that

contains the timestamps of all tuples in (&isi).

Proof. Let ti be the timestamp of si for all i. Let tmin = mini ti, the minimum over all

contributing tuples’ timestamps, and similarly, tmax = maxi ti. By definition of the clique,

tmax − tmin < ω and tmin ≤ ti ≤ tmax for all i. Thus, [tmin, tmax] satisfies the definition of I.

We now prove Theorem 5.2.1.

Proof. We will show that the omission of one tuple cannot lead to a false negative and

generalize inductively. Consider a query (&iSi) & (&jRj) where subquery (&iSi) is a clique

(the Rj need not form a clique). Let the neighborhood of stream S1 be the clique (&iSi).

Thus, S1 does not join directly with any Rj. Pick an arbitrary join output (&isi) & (&jrj).

For each i, let ti be the timestamp of tuple si. By Lemma 5.2.2, there exists an interval I of

length ω where ti ∈ I for all i. Assume that there exists a bracket on s1. For both the above

and below bracketing pair, at least one tuple from the pair falls inside I. Therefore at least

one of the four bracketing tuples (call it s′1) may replace s1 and (s′1&(&i≠1si))&(&jrj) will still

raise the alarm. Moreover, we know that no join predicate between pairs of streams other

than S1 has been violated since all other base tuples have been held constant. This logic

may be applied inductively to any chain of omissions and subsequent replacements within

the same stream, agnostic of omissions and replacements in other streams. Therefore, we

102

need not worry about a replacement tuple being replaced itself, so this will not cause false

negatives and the omission is safe.

In a clique query the neighborhood of each stream is the entire query. Thus Corollary

5.2.1.1 follows trivially. In Section 5.2.1 we discuss a scenario where a single join predicate is

dropped from a clique. Note that the neighborhood of any peripheral stream is automatically

a clique subquery as the clique of size 2 only has one edge. The only difference is that cliques

of size 2 allow us to use intervals of double length in our omission policy (See Footnote 1).

5.2.1 Near Clique

(a) Omitting u1 may lead to false positive. (b) Omitting r1 or r2 is safe.

Figure 5.6: Near-clique join missing predicate (R1,R2).

Consider the near clique query in Figure 5.6. Except for streams R1 and R2, all pairs

of streams share a join predicate. Figure 5.6a shows how a false negative can occur when

omitting u1. The join tuple x = r1 & u1 & ⋯ & u5 & r2 satisfies all join predicates and thus

should be passed to the threshold function. Assume that x would trigger the alarm. Now

suppose that u1 is bracketed by tuples u′1 and u′′1 and hence omitted. Observe that u′1 joins

with r2 but not with r1. Conversely, u′′1 joins with r1 but not with r2. Thus, in this scenario

the omission of u1 due to the bracket u′1, u
′′
1 can lead to a false negative.

103

On the other hand, omitting r1 is safe, because the neighborhood of stream R1 is

{R1, U1, . . . , U5}, which forms a clique. As depicted in Figure 5.6b any bracket on r1 will

necessarily leave at least one replacement in the interval I1. Thus we may apply our omission

policy to R1. A similar argument holds for tuple r2.

5.2.2 Multiquery Workloads

The consideration of mulitijoin streaming queries begs the question of how to apply our

omission policy in a multiquery setting. In this scenario, the central processing node is

executing multiple queries and a stream may be an input to some or all of them.

Suppose that each query is amenable to our omission policy individually. That is, it

includes a threshold function applied to the join of some stream inputs. Consider some

stream S. We will explain how each query that takes S as input enforces a minimal interval

size restriction on S. Recall that the set of tuples that are maintained for interval size ω

is the set of all tuples for which there exists some interval I of length ω in which the tuple

is minimal/maximal. I.e. the set of all minimal and/or maximal tuples. Let this subset

of tuples be Sω. For any tuple, if there exists an interval I ′ of length ω′ > ω in which the

tuple is minimal/maximal, then there must exist some interval I ⊂ I ′ which has length ω

and in which the tuple is still minimal/maximal. Therefore, the set of tuples that need to be

maintained for some interval size ω is a superset of those tuples that need to be maintained

for any larger interval size ω′ > ω. More formally,

ω′ > ω Ô⇒ Sω′ ⊆ Sω

Thus, the shorter the interval size, the more tuples we have to maintain to guarantee no

false negatives. This implies that if we have two queries both operating on some stream S, it

suffices to maintain the necessary tuples to whichever query is applying the smaller interval

size, i.e. the more restrictive query. By the argument above, all necessary tuples for the less

restrictive query are maintained as a byproduct of maintaining tuples for the more restrictive

104

query.

If the query is a simple join of two streams and computes a quasiconvex function with

respect to both inputs, then both streams must maintain min and max values for any interval

of length 2ω where ω is the pairwise distance bound to guarantee no false negatives. If the

query is a clique join of three or more streams, then all streams must maintain min and max

values for any interval of length ω (see footnote 1). If the query is a non-clique multijoin,

then any stream whose neighborhood is a clique must again only maintain min and max

values for any interval of length ω, where ω might differ from one query to the next. Finally,

for any stream S, if there is a query Q whose threshold function is not quasiconvex with

respect to S or if S’s neighborhood in Q’s join graph is not a clique, then we will need to

maintain every tuple from S. That is, the query enforces a length 0 interval size restriction.

For each stream, it suffices to maintain a subset of tuples corresponding to the narrowest

interval size restriction. This is disappointing since the existence of less restrictive queries

in the workload will not help us to reduce overall maintained state; the DSMS will still

need to maintain the necessary tuples for the most restrictive query. However, this is also a

”best case scenario” as maintaining the bare minimum amount of state to satisfy the most

restrictive query will be sufficient for all other queries and would be required to evaluate that

strict query anyway. That is, the less restrictive queries do not incur any extra work beyond

what is required for the most restrictive query.

5.3 Certifying Quasiconvexity

Ensuring that a function is linear or monotonic step is simple but requires a restrictive

user interface. On the other hand, general verification of quasiconvexity is difficult. Simple

functions may be rewritten in innumerable complex but still equivalent ways. Even normal

convexity is difficult to verify since there is no generic base formulation with which all convex

functions may be written. In fact, just checking the convexity of polynomials is NP-hard [6].

One imprecise solution is to evaluate the function at every point in a discretization of

the domain and check to see if quasiconvexity holds for those points. For the motivating

105

example, this involves evaluating Equation 5.1 for each point (s, h, a) in some discretization

of [−273.15, T] × [0,1] × [−273.15, T] where we choose T to be a reasonable upper bound on

a temperature reading.

A further refinement is automatically detecting if the threshold function is a (positive)

linear combination of smaller sub-functions. Each sub-function may then be certified against

the cross product of only those streams that appear in that sub-function. For the motivating

example, the sub-functions are:

φ1 = −s, φ2 = ln(
h

100
) , φ3 =

18.678a

257.14 + a

This technique may be used to cut down on the exponential size of the discretization: the

exponent of the complexity of the evaluation drops from the number of stream inputs to the

number of streams in the sub-function with the most stream inputs.

Even if one sub-function fails, our omission policy can still be applied to some streams. It

only discounts streams that were inputs to the failed sub-function. For example, if φ1 fails,

but φ2 and φ3 succeeds, then we can still safely omit tuples from H and A.

If the discretization is not sufficiently fine, then this test might miss unsafe functions.

In this scenario, small dips/spikes might appear between discretization steps creating the

illusion of quasiconvex behavior. However, the expense of using a finer discretization can be

affordable, since this analysis need only be run once to test the applicability of a function.

5.4 Evaluation

In this section, we demonstrate the effectiveness of our omission policy empirically. We

first briefly describe our implementation, then compare different tuple stores, and finally

investigate raw tuple retention.

106

5.4.1 Implementation Details

Many DSMS’s assume that the data is timestamp-ordered after ingestion [32, 28]. In these

cases, the first step in a query plan is a stateful incremental sort operator that sorts the

input during ingestion [31]. With this in mind, we prototyped our omission policy as an

online sorting algorithm that also omits bracketed and thus unnecessary tuples. We call it a

threshold sorter. This design allows us to plug the component easily into an existing DSMS.

The simplicity of the bracketing condition implies that the threshold sorter requires only a

few hundred lines of code to implement, not including the skip-list implementation [74].

5.4.2 Data Sets

We evaluate our method against both synthetic and real world data. The synthetic data

streams are comprised of (timestamp, value) pairs where the timestamps are chosen uniformly

at random from time range [0, T). The pairs are sorted into chronological order. Values are

drawn iid from a uniform distribution over some range. We refer to such a dataset as

“synth-uniform” or simply s-unif. Alternatively, we may choose values non-independently.

We simulate samples from a Wiener Process where the time discretization corresponds to

the already chosen random timestamps. We refer to such a dataset as “synth-wiener” or

simply s-wiener.

Disordered behavior may be introduced to a stream by adding random noise to the times-

tamp to simulate disparity between event time and processing time. We use Gaussian noise

and vary the standard deviation parameter to increase or decrease the degree of disorder.

The degree of disorder can be measured using the “inversion” rate measure: the fraction of

all pairs of tuples in the stream that are disordered (i.e., inverted) [84]. Formally, given some

sequence of values x0, x1, . . . , xn, the inversion rate of the sequence is defined as:

∣{i < j ∶ xi > xj}∣/∣{i < j}∣

107

5.4.3 Tuple Store Comparison

We compare the performance of Algorithm 3’s greedy tuple retention policy using three

different tuple store data structures: linked list (LL), skip-list (SL)[123], and red-black trees

(RB)[24]. All data structures use timestamp as the sort key with tuple values used to break

ties.

LL offers worst-case linear search/insertion/deletion. However, if the stream is in-order,

then the algorithm needs to follow only a single pointer to the tail of the linked list. By

contrast, SL and RB both offer logarithmic expected worst case complexity for search/inser-

tion/deletion.

Like LL, SL offers convenient lateral traversal over neighbors. While RB also offers lateral

traversal, there is potentially “wasted work” in that some nodes in the tree represent tuples

that are not within the interval ω of the new tuple’s timestamp but need to be traversed

to reach tuples that are within the interval. (See the loops starting at lines 19 and 29 in

Algorithm 3.) Moreover, RB does not support duplicate timestamps. Thus, the timestamps

in synthetic streams are drawn without replacement from the timestamp range. In summary,

we should expect SL to outperform LL and RB in the presence of disordered tuples and

underperform LL slightly if the stream is perfectly in order.

The following experiments measure the time needed to process each dataset without any

data arrival latency. That is, each implementation ingests the streams sequentially and

without any waiting between sucessive tuples. We report the total time spent on the stream.

In each experiment the stream consists of 106 tuples with timestamps drawn from the range

[0,107) (approximately 1 tuple every 10 time units). The interval size is kept at a constant

100 units for all experiments. With these parameters, approximately 40% of all tuples are

preserved after a full pass. Each experiment yields the average runtime of 5 trials. Results

along with empirical inversion rates may be found in Table 5.1

While LL performs best for in-order streams, as the degree of disorder increases LL

performance suffers a sharp decline. In contrast, while SL lags behind LL due to higher

108

Stream sigma inv rate LL SL RB

s-unif 0 (in order) < 10−6 0.727 1.184 4.565
s-wiener 0 (in order) < 10−6 0.753 1.247 4.824
s-unif 1 < 10−6 0.754 1.243 4.620
s-wiener 1 < 10−6 0.747 1.200 4.754
s-unif 10 < 10−6 0.768 1.232 4.821
s-wiener 10 < 10−6 0.787 1.254 5.058
s-unif 100 1.2 ⋅ 10−5 0.793 1.277 4.634
s-wiener 100 1.2 ⋅ 10−5 0.853 1.344 4.984
s-unif 1000 0.000111 1.031 1.373 4.801
s-wiener 1000 0.000102 1.113 1.440 4.861
s-unif 10000 0.001078 5.103 1.645 4.910
s-wiener 10000 0.001181 5.279 1.666 4.994
s-unif 100000 0.011324 84.341 2.594 6.036
s-wiener 100000 0.011216 80.047 2.522 6.131

Table 5.1: Stream processing times in seconds for linked-list (LL), skip-list (SL), and red-
black tree (RB) tuple store implementations on synthetic datasets with varying Gaussian
noise standard deviation (sigma). Stream size 106, timestamp range [0,107 − 1), interval
length 100.

bookkeeping costs of the underlying tuple-storage data structure, the logarithmic probe

complexity leads to graceful performance degradation as the stream becomes increasingly

disordered. RB follows a similar performance trend as SL with respect to degree of disorder

in the stream but consistently lags behind SL because it traverses more nodes than is strictly

necessary. Thus, if the stream is guaranteed to be in order, LL is the obvious simple choice.

However, if the stream might be disordered, SL is the more resilient data store.

Another consideration is trimming data. Often streaming query engines will drop data

that is no longer relevant. This is the case in normal operation when failures and network

partitions are not experienced. The engine assumes that no tuple will arrive with a times-

tamp earlier than some punctuation. While SL and RB will both find that cutoff point in

logarithmic time, RB will have to re-balance the tree after trimming. LL will again take

linear time to find the cutoff point. Both SL and LL can simply drop all tuples left of the

109

punctuation, a constant time operation. In this scenario SL has a clear theoretical advantage

over LL and RB.

5.4.4 Tuple Retention Savings

While the ability to deploy the algorithm is dependent on the join topology and threshold

function, the execution is entirely agnostic of external streams. Thus to demonstrate how

effectively our omission policy reduces the state, it suffices to demonstrate it on a single

stream. We evaluate the effectiveness of our approach on multiple streams as described

below.

• DEBS 2012 Grand Challenge (DEBS) is a dataset consisting of monitoring data

from manufacturing equipment [73]. We demonstrate the effectiveness of our omission

policy by pairing the given timestamps with the value of column mf01: the electrical

power main phase sensor reading. The stream consists of just over 32 million tuples.

• Gamma-Wiener is a synthetic dataset consisting of 10 million tuples. Timestamps

start at 0 with each subsequent timestamp adding an independent draw from a Gamma

distribution. Values are taken from a Wiener process with the discretization chosen

with respect to the timestamps.

For each stream, we assume that the value is an input parameter to a quasiconvex threshold

function. Recall that the specific nature of the stream or any joining stream is irrelevant given

that the threshold function is quasiconvex. We wish to demonstrate that the performance

of our omission policy depends mostly on the number of tuples that appear inside any given

interval. As we vary interval length, we expect the proportion of omitted tuples to vary

approximately linearly with respect to the average number of tuples per interval.

Longer intervals are semantically more inclusive: one would expect the true join output to

grow exponentially with respect to the interval length, where the exponent is the number of

streams being joined. However, longer intervals also lead to more base tuples being omitted

110

Figure 5.7: Retained tuples in the presence of significant time gaps. Each retained tuple is
paired with an interval in which that tuple is maximal thus forcing the inclusion of the tuple.
Of the 15 total depicted tuples, we are forced to retain 10.

as the range of tuples that may comprise a bracket grows. In the following experiments we

omit tuples if they are both above and below bracketed. The results are in Figures 5.8a and

5.8b.

(a) Total tuple retention. (b) Average per interval tuple retention.

Figure 5.8: Tuple omission performance when varying interval length.

Results for Gamma-Wiener are noticeably uniform, because large time gaps and longer

sustained shifts in the value parameter are less likely. For very narrow intervals, the true

number of tuples per interval is exceedingly small. Hence the fraction of retained tuples over

total tuples is very high (lefthand side of Figure 5.8a), while the average number of tuples that

111

are retained per interval is very low: there just are not enough tuples per interval. However,

once the total tuples per interval grows to about four, the fraction of retained tuples drops

dramatically. This trend is most easily understood in Figure 5.8b where the average number

of retained tuples per interval for Gamma-Wiener flat-lines at four. Given that we omit a

tuple when it is above and below bracketed, this average of four tuples per interval is not

surprising. Intuitively, each omitted tuple requires one above and one below bracket. If one

draws a loose connection between an omitted tuple and an interval it represents, the four

points in the above and below bracket are the 4 retained tuples per interval.

Results are less uniform for DEBS. As one might expect, when intervals are exceedingly

narrow and on average few tuples appear for any given interval, the fraction of total retained

tuples stays close to one since there are rarely enough close neighbors to form a bracket.

Notice that DEBS begins omitting tuples at a lower average tuple density than Gamma-

Wiener. This is because the timestamp distribution for DEBS is highly skewed with large

gaps between clusters of timestamps.

Clustering tuples increases the probability of forming brackets and omitting tuples. While

this timestamp skew helps at lower density, it actually does the opposite at higher average

tuple densities. Observe in Figure 5.8b that DEBS seems to level off around 8 retained tuples

per interval. This is partially because the large timestamp gaps create boundary effects that

force us to retain disproportionate numbers of tuples just before and just after these gaps.

Simply put, the lack of tuples in a time gap often eliminates the ability to construct brackets

forcing us to retain more tuples. Thus, disproportionately many tuples are retained near the

boundaries of time gaps. An example scenario is in Figure 5.7.

As we increase interval length, often these gaps may be bridged and the time gap bound-

ary retained tuples decrease proportional to the total tuples per interval. This is characterized

as the slight downward trend in average retained tuples per interval for DEBS between 27

and 211 tuples per interval. However, as intervals grow but still fail to bridge larger gaps,

many time gap boundary retained tuples remain. Thus the number retained tuples per in-

terval also increases proportionately. This explains the spike in average retained tuples per

112

interval for DEBS on the right hand side of Figure 5.8b. However, at this point the average

tuples per interval is very large making this scenario unlikely in practice.

113

Chapter 6

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation we present novel work in applying data sketching techniques during

the optimization and execution of join queries. We emphasize that joins are a fundamental

data operation, which still cause headaches for production systems.

For analytic multijoin queries we argue that existing methods fail to capture complex

correlations across tables. Typical production systems rely on strong assumption about the

underlying data which leaves the executor vulnerable to severe cardinality underestimation

from the optimization process. Instead we champion the use of theoretically guaranteed car-

dinality upper bounds by demonstrating how to tighten existing entropic bounding formulae.

This marks the newest practical advancement in entropic bounds and their relationship with

relational joins. Moreover, our experiments suggest that using bounds is a possible key to

robust query optimization; a goal of multijoin and multiquery optimization that has been

sought after for decades. We go on to outline key challenges with our tightened bounding

approach and how one may rectify these issues. These challenges include tighter integration

with existing join optimization procedures, the approximation of max fanout in a distributed

setting, as well as the interaction between bounds and adaptive query optimization and ex-

ecution techniques.

Our work invites further experimentation and optimization across a broader collection of

workloads and architectures. In particular, future work might include practical implementa-

tions in existing production systems such as Apache Spark, Amazon Redshift, Microsoft SQL

Server, and Snowflake [149, 63, 61, 45]. While we outline solutions for the most obvious chal-

lenges of such an implementation, other lower level of issues such as the exact partitioning

size/strategy and interactions with physical data layouts still remain. Other future direc-

114

tions include a hybrid optimization strategy which can be used to deploy bounds when there

is indication that traditional methods might generate disastrous plans. The challenge with

this hybrid strategy is defining the exact nature of this disaster indicator. In order to test

these practical implementations, more challenging workloads will also need to be developed

and made widely available. While the IMDb workload showcases the dangers of correlated

and skewed data from the real world, the raw size of the dataset is insufficient for testing

the big data systems of the future. For now, the largest real world datasets are proprietary

and unlikely to be released publicly by the large corporations that maintain them.

We also explore the problem of joins in the streaming data model where a combination

of unreliable connectivity, limited resources, and the demand for low latency often lead to

system failures. In the common case of threshold functions applied to the result of temporal

joins, we present a theoretically optimal tuple omission policy that may be executed at low

computational overhead. The omission policy is a pure push-down method that may be

applied before the join even at the stream emitter leading to decreased network usage, as

well as memory usage at the central DSMS. Experiments demonstrate that the empirical

behavior approximately follows theoretical analysis. Furthermore, our omission policy may

be generalized to the multijoin and multiquery setting.

While threshold function on stream joins is a narrower area than analytical query opti-

mization, we emphasize that it is a growth market. In fact, the global market for IoT devices

–a driving factor behind stream query processing– is expected to reach close to 2 trillion dol-

lars by 2028 [53]. From a practical standpoint, our tuple omission policy can benefit from

further optimizations to the greedy omission algorithm, as well as an explicit implementation

of our proposed quasiconvexity detection algorithm. Furthermore, more thorough testing on

real world threshold stream join workloads (as versus experiments on expected single stream

performance) would highlight the costs and benefits of our framework.

Final Remarks: The main takeaway from this dissertation is that fundamental prin-

ciples still govern data processing. Understanding these constraints is necessary to mak-

ing systems robust and performant. Our focus on joins highlights that even longstanding

115

problems can be solved or at least mitigated with carefully constructed and deployed data

sketches. We believe that future work will extend these principled methods to issues that

will inevitably arise not just in the processing of joins but across the entire data processing

stack.

116

BIBLIOGRAPHY

[1] Daniel J. Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Çetintemel, Mitch Cher-
niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin, Esther
Ryvkina, Nesime Tatbul, Ying Xing, and Stanley B. Zdonik. The design of the bo-
realis stream processing engine. In Second Biennial Conference on Innovative Data
Systems Research, CIDR 2005, Asilomar, CA, USA, January 4-7, 2005, Online Pro-
ceedings, pages 277–289. www.cidrdb.org, 2005.

[2] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building histograms
without looking at data. In Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’99, page 181–192, New York, NY,
USA, 1999. Association for Computing Machinery.

[3] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building histograms
without looking at data. SIGMOD Rec., 28(2):181–192, June 1999.

[4] S. Agarwal, S. Kandula, N. Bruno, Ming-Chuan Wu, I. Stoica, and Jingren Zhou.
Reoptimizing data parallel computing. In NSDI, 2012.

[5] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. Blinkdb: Queries with bounded errors and bounded response times
on very large data. In Proceedings of the 8th ACM European Conference on Computer
Systems, EuroSys ’13, pages 29–42, New York, NY, USA, 2013. ACM.

[6] Amir Ahmadi, Alex Olshevsky, Pablo Parrilo, and John Tsitsiklis. Np-hardness of
deciding convexity of quartic polynomials and related problems. Mathematical Pro-
gramming, 137, 12 2010.

[7] Tyler Akidau, Alex Balikov, Kaya Bekiroglu, Slava Chernyak, Josh Haberman, Reuven
Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. Millwheel: Fault-
tolerant stream processing at internet scale. In Very Large Data Bases, pages 734–746,
2013.

[8] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating
the frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Sympo-
sium on Theory of Computing, STOC ’96, page 20–29, New York, NY, USA, 1996.
Association for Computing Machinery.

117

[9] Amazon. IMDb, 2018.

[10] Amazon. Amazon Timestream, 2020.

[11] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish Gupta, Haifeng
Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid Ryabkov, Manpreet Singh, and
Shivakumar Venkataraman. Photon: fault-tolerant and scalable joining of continuous
data streams. In SIGMOD, pages 577–588, 2013.

[12] Austin Appleby. SMHasher, 2008.

[13] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,
and David A. Patterson. PIQL: success-tolerant query processing in the cloud. CoRR,
abs/1111.7166, 2011.

[14] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. Structured streaming: A
declarative API for real-time applications in apache spark. In SIGMOD, pages 601–
613, 2018.

[15] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, page
1383–1394, New York, NY, USA, 2015. Association for Computing Machinery.

[16] Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin,
and Matthias Renz. Similarity search on time series based on threshold queries. In
EDBT, pages 276–294, 2006.

[17] Johannes Aßfalg, Hans-Peter Kriegel, Peer Kröger, Peter Kunath, Alexey Pryakhin,
and Matthias Renz. T-time: Threshold-based data mining on time series. In ICDE,
pages 1620–1623, 2008.

[18] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for
relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

[19] Ron Avnur and Joseph M. Hellerstein. Eddies: Continuously adaptive query process-
ing. SIGMOD Rec., 29(2):261–272, May 2000.

[20] Ahmed Ayad and Jeffrey F. Naughton. Static optimization of conjunctive queries with
sliding windows over infinite streams. In SIGMOD, pages 419–430, 2004.

118

[21] Brian Babcock and Surajit Chaudhuri. Towards a robust query optimizer: A princi-
pled and practical approach. In Proceedings of the 2005 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’05, pages 119–130, New York, NY,
USA, 2005. ACM.

[22] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load shedding for aggregation
queries over data streams. In Proceedings of the 20th International Conference on Data
Engineering, ICDE ’04, page 350, USA, 2004. IEEE Computer Society.

[23] Shivnath Babu, Pedro Bizarro, and David DeWitt. Proactive re-optimization. In
Proceedings of the 2005 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’05, pages 107–118, New York, NY, USA, 2005. ACM.

[24] Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms.
Acta Inf., 1(4):290–306, December 1972.

[25] Richard L. Bishop and Samuel I. Goldberg. Tensor analysis on manifolds. Dover, 1980.

[26] Walter Cai, Magdalena Balazinska, and Dan Suciu. Pessimistic cardinality estimation:
Tighter upper bounds for intermediate join cardinalities. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD ’19, page 18–35, New
York, NY, USA, 2019. Association for Computing Machinery.

[27] Walter Cai, Philip A. Bernstein, Wentao Wu, and Badrish Chandramouli. Optimiza-
tion of threshold functions over streams. Proc. VLDB Endow., 14(6):878–889, February
2021.

[28] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache flink™: Stream and batch processing in a single engine. IEEE
Data Eng. Bull., 38(4):28–38, 2015.

[29] Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Piet-
zuch. Integrating scale out and fault tolerance in stream processing using operator state
management. In Proceedings of the 2013 ACM SIGMOD international conference on
Management of data, pages 725–736, 2013.

[30] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R Henry,
Robert Bradshaw, and Nathan Weizenbaum. Flumejava: easy, efficient data-parallel
pipelines. ACM Sigplan Notices, 45(6):363–375, 2010.

[31] B. Chandramouli, J. Goldstein, and Y. Li. Impatience is a virtue: Revisiting disorder
in high-performance log analytics. 2018 IEEE 34th International Conference on Data
Engineering (ICDE), pages 677–688, 2018.

119

[32] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel
Fisher, John C. Platt, James F. Terwilliger, and John Wernsing. Trill: A high-
performance incremental query processor for diverse analytics. Proc. VLDB Endow.,
8(4):401–412, December 2014.

[33] Sirish Chandrasekaran and Michael J. Franklin. Streaming queries over streaming data.
In Proceedings of the 28th International Conference on Very Large Data Bases, VLDB
’02, page 203–214. VLDB Endowment, 2002.

[34] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in
data streams. In Proceedings of the 29th International Colloquium on Automata,
Languages and Programming, ICALP ’02, page 693–703, Berlin, Heidelberg, 2002.
Springer-Verlag.

[35] S. Chaudhuri and Vivek R. Narasayya. Self-tuning database systems: A decade of
progress. In VLDB, 2007.

[36] Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. On random sampling over
joins. SIGMOD Rec., 28(2):263–274, June 1999.

[37] Chungmin Melvin Chen and Nick Roussopoulos. Adaptive selectivity estimation using
query feedback. SIGMOD Rec., 23(2):161–172, May 1994.

[38] Chungmin Melvin Chen and Nick Roussopoulos. Adaptive selectivity estimation using
query feedback. In Proceedings of the 1994 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’94, page 161–172, New York, NY, USA, 1994.
Association for Computing Machinery.

[39] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. Niagaracq: A scalable
continuous query system for internet databases. In Proceedings of the 2000 ACM SIG-
MOD International Conference on Management of Data, SIGMOD ’00, page 379–390,
New York, NY, USA, 2000. Association for Computing Machinery.

[40] Yu Chen and Ke Yi. Two-level sampling for join size estimation. In Proceedings of
the 2017 ACM International Conference on Management of Data, SIGMOD ’17, pages
759–774, New York, NY, USA, 2017. ACM.

[41] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Efficient
join query evaluation in a parallel database system. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’15, page 63–78,
New York, NY, USA, 2015. Association for Computing Machinery.

120

[42] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, June 1970.

[43] Graham Cormode. Sketch techniques for approximate query processing. 2010.

[44] Graham Cormode and S. Muthukrishnan. An improved data stream summary: The
count-min sketch and its applications. J. Algorithms, 55(1):58–75, April 2005.

[45] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng
Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter
Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. The snowflake
elastic data warehouse. In Proceedings of the 2016 International Conference on Man-
agement of Data, SIGMOD ’16, page 215–226, New York, NY, USA, 2016. Association
for Computing Machinery.

[46] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. Approximate join pro-
cessing over data streams. In Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’03, page 40–51, New York, NY, USA,
2003. Association for Computing Machinery.

[47] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113, January 2008.

[48] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian
Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David Lomet,
and Tim Kraska. Alex: An updatable adaptive learned index. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data, SIGMOD ’20,
page 969–984, New York, NY, USA, 2020. Association for Computing Machinery.

[49] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. Tsunami: A
learned multi-dimensional index for correlated data and skewed workloads. Proc. VLDB
Endow., 14(2):74–86, October 2020.

[50] Cristian Estan and Jeffrey F. Naughton. End-biased samples for join cardinality es-
timation. In Proceedings of the 22Nd International Conference on Data Engineering,
ICDE ’06, pages 20–, Washington, DC, USA, 2006. IEEE Computer Society.

[51] Leonidas Fegaras. A new heuristic for optimizing large queries. In Proceedings of the
9th International Conference on Database and Expert Systems Applications, DEXA
’98, pages 726–735, London, UK, UK, 1998. Springer-Verlag.

121

[52] Fedor V. Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh, and
B.V. Raghavendra Rao. Faster algorithms for finding and counting subgraphs. J.
Comput. Syst. Sci., 78(3):698–706, May 2012.

[53] Fortune Business Insights. Internet of Things (IoT) Market Worth USD 1,854.76
Billion by 2028; Critical Need to Virtually Monitor Operations to Boost Growth, 2021.

[54] Nikos Giatrakos, Antonios Deligiannakis, Minos Garofalakis, Izchak Sharfman, and
Assaf Schuster. Prediction-based geometric monitoring over distributed data streams.
In Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’12, page 265–276, New York, NY, USA, 2012. Association for
Computing Machinery.

[55] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD Rec.,
32(2):5–14, 2003.

[56] Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in continuous
queries over data streams. In VLDB, pages 500–511, 2003.

[57] Google. GooglePlus, 2017.

[58] Google. Holt-Winters’ Seasonal Method, 2020.

[59] G. Graefe. Volcano/spl minus/an extensible and parallel query evaluation system.
IEEE Transactions on Knowledge and Data Engineering, 6(1):120–135, 1994.

[60] Goetz Graefe. The cascades framework for query optimization. IEEE Data Eng. Bull.,
18(3):19–29, 1995.

[61] Jim Gray. Microsoft sql server. January 1997.

[62] Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. In Pro-
ceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 289–298, 2006.

[63] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano
Stefani, and Vidhya Srinivasan. Amazon redshift and the case for simpler data ware-
houses. In Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, page 1917–1923, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

122

[64] Hazar Harmouch and Felix Naumann. Cardinality estimation: An experimental survey.
Proc. VLDB Endow., 11(4):499–512, December 2017.

[65] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas, and
Gautam Das. Deep learning models for selectivity estimation of multi-attribute queries.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’20, page 1035–1050, New York, NY, USA, 2020. Association for
Computing Machinery.

[66] J. Hellerstein. What goes around comes around by michael stonebraker. 2004.

[67] J. M. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, Kris Hildrum,
S. Madden, V. Raman, and M. Shah. Adaptive query processing: Technology in
evolution. IEEE Data Eng. Bull., 23:7–18, 2000.

[68] Axel Hertzschuch, Claudio Hartmann, Dirk Habich, and Wolfgang Lehner. Simplicity
done right for join ordering. In CIDR, 2021.

[69] Martin Hirzel, Robert Soulé, Scott Schneider, Bugra Gedik, and Robert Grimm. A
catalog of stream processing optimizations. ACM Comput. Surv., 46(4):46:1–46:34,
2013.

[70] Robin John Hyndman and George Athanasopoulos. Forecasting: Principles and Prac-
tice. OTexts, Australia, 2nd edition, 2018.

[71] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for computing
n-relational joins. ACM Trans. Database Syst., 9(3):482–502, September 1984.

[72] influxData. InfluxDB, 2020.

[73] Zbigniew Jerzak, Thomas Heinze, Matthias Fehr, Daniel Gröber, Raik Hartung, and
Nenad Stojanovic. The debs 2012 grand challenge. In Proceedings of the 6th ACM In-
ternational Conference on Distributed Event-Based Systems, DEBS ’12, page 393–398,
New York, NY, USA, 2012. Association for Computing Machinery.

[74] David Jeske. Bdskiplist. last accessed 2020-09-30.

[75] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. In Proceedings of the 1998 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’98, page 106–117, New York, NY, USA,
1998. Association for Computing Machinery.

123

[76] Navin Kabra and David J. DeWitt. Efficient mid-query re-optimization of sub-optimal
query execution plans. SIGMOD Rec., 27(2):106–117, June 1998.

[77] Tomer Kaftan, Magdalena Balazinska, Alvin Cheung, and Johannes Gehrke. Cuttlefish:
A lightweight primitive for adaptive query processing, 2018.

[78] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert
Grandl, Surajit Chaudhuri, and Bolin Ding. Quickr: Lazily approximating complex
adhoc queries in bigdata clusters. In Proceedings of the 2016 International Conference
on Management of Data, SIGMOD ’16, pages 631–646, New York, NY, USA, 2016.
ACM.

[79] Jaewoo Kang, Jeffrey F. Naughton, and Stratis Viglas. Evaluating window joins over
unbounded streams. In ICDE, pages 341–352, 2003.

[80] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. Computing join queries with
functional dependencies. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA,
June 26 - July 01, 2016, pages 327–342, 2016.

[81] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type in-
equalities, submodular width, and disjunctive datalog have to do with one another?
CoRR, abs/1612.02503, 2016.

[82] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons
Kemper. Learned cardinalities: Estimating correlated joins with deep learning. CoRR,
abs/1809.00677, 2018.

[83] Andreas Kipf, Dimitri Vorona, Jonas Müller, Thomas Kipf, Bernhard Radke, Viktor
Leis, Peter Boncz, Thomas Neumann, and Alfons Kemper. Estimating cardinalities
with deep sketches. In Proceedings of the 2019 International Conference on Manage-
ment of Data, SIGMOD ’19, page 1937–1940, New York, NY, USA, 2019. Association
for Computing Machinery.

[84] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-
mental Algorithms. Addison Wesley Longman Publishing Co., Inc., USA, 1997.

[85] Ilya Kolchinsky and Assaf Schuster. Efficient adaptive detection of complex event
patterns. Proc. VLDB Endow., 11(11):1346–1359, July 2018.

[86] Ilya Kolchinsky and Assaf Schuster. Real-time multi-pattern detection over event
streams. In Proceedings of the 2019 International Conference on Management of Data,

124

SIGMOD ’19, page 589–606, New York, NY, USA, 2019. Association for Computing
Machinery.

[87] Tim Kraska, Mohammad Alizadeh, Alex Beutel, H Chi, Ani Kristo, Guillaume Leclerc,
Samuel Madden, Hongzi Mao, and Vikram Nathan. Sagedb: A learned database
system. In CIDR, 2019.

[88] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In Proceedings of the 2018 International Conference on Man-
agement of Data, SIGMOD ’18, page 489–504, New York, NY, USA, 2018. Association
for Computing Machinery.

[89] Ravi Krishnamurthy, Haran Boral, and Carlo Zaniolo. Optimization of nonrecursive
queries. In Proceedings of the 12th International Conference on Very Large Data Bases,
VLDB ’86, pages 128–137, San Francisco, CA, USA, 1986. Morgan Kaufmann Pub-
lishers Inc.

[90] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica.
Learning to optimize join queries with deep reinforcement learning, 2019.

[91] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. How good are query optimizers, really? Proc. VLDB Endow.,
9(3):204–215, November 2015.

[92] Viktor Leis, Bernharde Radke, Andrey Gubichev, Alfons Kemper, and Thomas Neu-
mann. Cardinality estimation done right: Index-based join sampling. In CIDR, 2017.

[93] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection, June 2014.

[94] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggregation via
random walks. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD ’16, page 615–629, New York, NY, USA, 2016. Association for
Computing Machinery.

[95] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical selectiv-
ity estimation through adaptive sampling. In Proceedings of the 1990 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’90, page 1–11, New York,
NY, USA, 1990. Association for Computing Machinery.

[96] Richard J. Lipton, Jeffrey F. Naughton, and Donovan A. Schneider. Practical selec-
tivity estimation through adaptive sampling. SIGMOD Rec., 19(2):1–11, May 1990.

125

[97] G. Lohman. Is query optimization a ’solved’ problem? 1989.

[98] Mary E. S. Loomis. The 78 codasyl database model: A comparison with preceding
specifications. In Proceedings of the 1980 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’80, page 30–44, New York, NY, USA, 1980. Associa-
tion for Computing Machinery.

[99] S. Madden and M.J. Franklin. Fjording the stream: an architecture for queries over
streaming sensor data. In Proceedings 18th International Conference on Data Engi-
neering, pages 555–566, 2002.

[100] Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In Proceedings of the 28th International Conference on Very Large Data
Bases, VLDB ’02, page 346–357. VLDB Endowment, 2002.

[101] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh,
and Tim Kraska. Bao: Making learned query optimization practical. In Proceedings
of the 2021 International Conference on Management of Data, SIGMOD/PODS ’21,
page 1275–1288, New York, NY, USA, 2021. Association for Computing Machinery.

[102] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim
Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned query optimizer.
Proc. VLDB Endow., 12(11):1705–1718, July 2019.

[103] Julian Mcauley and Jure Leskovec. Discovering social circles in ego networks. ACM
Trans. Knowl. Discov. Data, 8(1), February 2014.

[104] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of
frequent and top-k elements in data streams. In Proceedings of the 10th International
Conference on Database Theory, ICDT’05, page 398–412, Berlin, Heidelberg, 2005.
Springer-Verlag.

[105] Microsoft. Azure Stream Analytics, 2020.

[106] J. Misra and David Gries. Finding repeated elements. Science of Computer Program-
ming, 2(2):143–152, 1982.

[107] Guido Moerkotte and Thomas Neumann. Dynamic programming strikes back. In In
SIGMOD, pages 539–552, 2008.

[108] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. Preventing bad plans by
bounding the impact of cardinality estimation errors. Proc. VLDB Endow., 2(1):982–
993, August 2009.

126

[109] Magnus Müller, Guido Moerkotte, and Oliver Kolb. Improved selectivity estimation by
combining knowledge from sampling and synopses. Proc. VLDB Endow., 11(9):1016–
1028, May 2018.

[110] M. Muralikrishna and David J. DeWitt. Equi-depth multidimensional histograms. In
Proceedings of the 1988 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’88, page 28–36, New York, NY, USA, 1988. Association for Computing
Machinery.

[111] Thomas Neumann. Classification of Join Ordering Problems, 2009.

[112] Thomas Neumann. Efficiently compiling efficient query plans for modern hardware.
Proc. VLDB Endow., 4(9):539–550, June 2011.

[113] Thomas Neumann and Bernhard Radke. Adaptive optimization of very large join
queries. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, pages 677–692, New York, NY, USA, 2018. ACM.

[114] Hung Q Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: New developments
in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, February 2014.

[115] Frank Olken and Doron Rotem. Simple random sampling from relational databases.
In Proceedings of the 12th International Conference on Very Large Data Bases, VLDB
’86, page 160–169, San Francisco, CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[116] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S. Sathiya Keerthi.
Learning state representations for query optimization with deep reinforcement learn-
ing. In Proceedings of the Second Workshop on Data Management for End-To-End
Machine Learning, DEEM’18, New York, NY, USA, 2018. Association for Computing
Machinery.

[117] Yeonsu Park, Seongyun Ko, Sourav S. Bhowmick, Kyoungmin Kim, Kijae Hong, and
Wook-Shin Han. G-care: A framework for performance benchmarking of cardinality es-
timation techniques for subgraph matching. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, page 1099–1114, New
York, NY, USA, 2020. Association for Computing Machinery.

[118] Tiago P. Peixoto. The Netzschleuder network catalogue and repository, August 2021.

[119] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. Im-
proved histograms for selectivity estimation of range predicates. SIGMOD Rec.,
25(2):294–305, June 1996.

127

[120] Viswanath Poosala, Peter J. Haas, Yannis E. Ioannidis, and Eugene J. Shekita. Im-
proved histograms for selectivity estimation of range predicates. In Proceedings of the
1996 ACM SIGMOD International Conference on Management of Data, SIGMOD ’96,
page 294–305, New York, NY, USA, 1996. Association for Computing Machinery.

[121] Olga Poppe, Chuan Lei, Salah Ahmed, and Elke A. Rundensteiner. Complete event
trend detection in high-rate event streams. In Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data, SIGMOD ’17, page 109–124, New York,
NY, USA, 2017. Association for Computing Machinery.

[122] Postgres Development Core Team. PostgreSQL, 2017.

[123] William Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM, 33(6):668–676, 1990.

[124] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems. McGraw-
Hill, Inc., USA, 3 edition, 2002.

[125] Guy Sagy, Daniel Keren, Izchak Sharfman, and Assaf Schuster. Distributed threshold
querying of general functions by a difference of monotonic representation. Proc. VLDB
Endow., 4(2):46–57, November 2010.

[126] S. Sujin Issac Samuel. A review of connectivity challenges in iot-smart home. In 2016
3rd MEC International Conference on Big Data and Smart City (ICBDSC), pages 1–4,
2016.

[127] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access path selection in a relational database management system. In Proceedings of
the 1979 ACM SIGMOD International Conference on Management of Data, SIGMOD
’79, pages 23–34, New York, NY, USA, 1979. ACM.

[128] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to moni-
toring threshold functions over distributed data streams. ACM Trans. Database Syst.,
32(4):23–es, November 2007.

[129] Izchak Sharfman, Assaf Schuster, and Daniel Keren. Shape sensitive geometric moni-
toring. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, PODS ’08, page 301–310, New York, NY,
USA, 2008. Association for Computing Machinery.

[130] D. Sonntag. Important new values of the physical constants of 1986, vapour pressure
formulations based on the its-90, and psychrometer formulae. 1990.

128

[131] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. Leo - db2’s
learning optimizer. In Proceedings of the 27th International Conference on Very Large
Data Bases, VLDB ’01, page 19–28, San Francisco, CA, USA, 2001. Morgan Kaufmann
Publishers Inc.

[132] Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator. Proc. VLDB
Endow., 13(3):307–319, November 2019.

[133] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung Wu. General in-
cremental sliding-window aggregation. Proceedings of the VLDB Endowment, 8(7):702–
713, 2015.

[134] Nesime Tatbul, Uğur Çetintemel, Stan Zdonik, Mitch Cherniack, and Michael Stone-
braker. Load shedding in a data stream manager. In Proceedings of the 29th Interna-
tional Conference on Very Large Data Bases - Volume 29, VLDB ’03, page 309–320.
VLDB Endowment, 2003.

[135] Timescale. TimescaleDB, 2020.

[136] Daniel Ting. Data sketches for disaggregated subset sum and frequent item estimation.
In Proceedings of the 2018 International Conference on Management of Data, SIGMOD
’18, pages 1129–1140, New York, NY, USA, 2018. ACM.

[137] Howell Tong. Threshold models in time series analysis–30 years on. Statistics and its
Interface, 4(2):107–118, 2011.

[138] Jonas Traub, Philipp Marian Grulich, Alejandro Rodriguez Cuellar, Sebastian Breß,
Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. Scotty: Efficient window
aggregation for out-of-order stream processing. In 2018 IEEE 34th International Con-
ference on Data Engineering (ICDE), pages 1300–1303. IEEE, 2018.

[139] Twitter. Twitter, 2017.

[140] Todd L. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm, 2013.

[141] David Vengerov, Andre Cavalheiro Menck, Mohamed Zait, and Sunil Chakkappen.
Join size estimation subject to filter conditions. PVLDB, 8:1530–1541, 2015.

[142] Stratis Viglas and Jeffrey F. Naughton. Rate-based query optimization for streaming
information sources. In SIGMOD, pages 37–48, 2002.

129

[143] Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin, Brandon Haynes,
Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan Maas, Parmita Mehta, Dominik
Moritz, Brandon Myers, Jennifer Ortiz, Dan Suciu, Andrew Whitaker, and Shengliang
Xu. The myria big data management and analytics system and cloud services. In 8th
Biennial Conference on Innovative Data Systems Research, CIDR 2017, Chaminade,
CA, USA, January 8-11, 2017, Online Proceedings. www.cidrdb.org, 2017.

[144] wikipedia. Tensor contraction, 2021.

[145] Annita N. Wilschut and Peter M. G. Apers. Dataflow query execution in a parallel
main-memory environment. In PDIS, pages 68–77, 1991.

[146] Lucas Woltmann, C. Hartmann, D. Habich, and W. Lehner. Machine learning-based
cardinality estimation in dbms on pre-aggregated data. ArXiv, abs/2005.09367, 2020.

[147] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao,
and Sriram Rao. Towards a learning optimizer for shared clouds. Proc. VLDB Endow.,
12(3):210–222, November 2018.

[148] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, page 10, USA, 2010.
USENIX Association.

[149] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark:
A unified engine for big data processing. Commun. ACM, 59(11):56–65, October 2016.

[150] U. Çetintemel, D. Abadi, Yanif Ahmad, H. Balakrishnan, M. Balazinska, Mitch Cherni-
ack, J. Hwang, S. Madden, Anurag Maskey, A. Rasin, Esther Ryvkina, M. Stonebraker,
Nesime Tatbul, Ying Xing, and S. Zdonik. The aurora and borealis stream processing
engines. In Data Stream Management, 2016.

130

Appendix A

THE AGM BOUND

The proof may be originally found [18] and is reproduced below:

Theorem A.0.1 (The AGM Bound). Consider query Q over relational schema σ and let

D = (R1, . . . ,Rm) be a database instance of σ. For all fractional edge covers (u1, . . . , um) of

Q we have

∣Q(D)∣ ≤
m

∏
j=1

∣Rj(D)∣uj

Proof. Due to the density of rationals in the reals, WLOG we may assume uj ∈ Q. Thus

there exists {vj} and w s.t. uj = vj/w for all j. Let ∑j vj = V . Consider a possibly repeating

collection of subsets aaa, the attributes appearing in Q:

ãaa1, . . . , ãaaV ∈ 2aaa

where the collection contains precisely vj copies of each subset aaaj. That is,

∣ {k ∶ aaaj = ãaak} ∣ = vj

We may therefore assume that for all i, the attribute ai ∈ aaa appears in at least w elements

of the collection since

∣ {k ∶ ai ∈ ãaak} ∣ = ∑
j∶ai∈aaaj

vj = w ⋅ ∑
j∶x∈xxxj

uj ≥ w

by definition of a fractional edge cover.

131

Finally, let X be a tuple of random variables

XXX = (X1, . . . ,Xm)

where each Xi corresponds to attribute ai in aaa. Let X be uniformly distributed on Q(D).

That is, for all tuples t ∈ Q(D), P(X = t) = ∣Q(D)∣−1. Because XXX is uniformly distributed on

a space of size ∣Q(D)∣ we have the entropy of XXX

h[XXX] = log ∣Q(D)∣

We may now apply Shearer’s Lemma (A.0.2) on the variable tuple XXX as well as the collection

of attribute subsets ãaak:

b ⋅ log ∣Q(D)∣ = b ⋅ h[XXX]
A.0.2
≤

A

∑
k=1
h [XXXãaak] =

m

∑
j=1
vjh [XXXaaaj]

EXPLAIN IN WORDS HOW WE APPLY SHEARER’S LEMMA. For each relation Rj, we

have the marginal entropy h[Xaaaj] of the variable tuples on those attributes appearing in

Rj is bounded above by the entropy of the uniform distribution on the relational instance

Rj(D). We may therefore continue:

m

∑
j=1
vjh [XXXaaaj] ≤

m

∑
j=1
vj log ∣Rj(D)∣

We conclude:

∣Q(D)∣ ≤ 2
1
w ∑

m
j=1 vj log∣Rj(D)∣ =

m

∏
j=1

∣Rj(D)∣
vj/w =

m

∏
j=1

∣Rj(D)∣
uj

Lemma A.0.2 (Shearer’s Lemma). Let XXX = (X1, . . . ,Xm) be a tuple of random variables

and let ã1, . . . , ãaaV be a not necessarily distinct collection of subsets of the index set [m] where

132

for each Xi ∈XXX, X appears in at least w elements of ãaa1, . . . , ãaaV . That is, for all i

∣{k ∶ i ∈ ãaak}∣ ≥ w

For each index subset I ⊂ [m], define the variable tuple XXXI = (Xi ∶ i ∈ I). We may bound the

entropy of X in terms of the marginal entropies of the Xãaak and w:

w ⋅ h[XXX] ≤
V

∑
k=1

h [Xãaak]

133

Appendix B

SINGLE PASS ALGORITHM TO COMPUTE BOUND
SKETCH

The downside of using the BS is the increased optimization time. We populate our

sketches using a naive algorithm based on the SQL query found in Figure B.1 which we

feed to our modified postgres instance. While this method is sufficient to demonstrate that

more robust plans are possible, it is not optimized for efficient optimization time. In the

presence of FK indexes, the additional optimization time over the JOB is 4,795 seconds.

This additional optimization time is longer than execution time. Without FK indexes, the

additional optimization time is 6,450 seconds. Again, the additional optimization time is

longer than actual execution time but insignificant compared to the execution time for plans

generated by default Postgres.

The BS may calculated in a single pass following the Algorithm 5. For simplicity, we

assume a binary relation R with two join variables x, y and hash partition sizes Mx,My.

However, this method is easily generalized to any number of join variables and may be

executed concurrently in the same table scan but with alternative hash partition sizes.

While this algorithm is linear in runtime, it also requires linear additional storage in the

worst case. Alternatively, one degree sketch (with respect to x) as well as the count sketch

could also be populated using the nested SQL query found in Figure B.1. To populate both

degree sketches, a query of this form would need to be executed twice. However, it is often

the case that only a single degree statistic is needed for all bounding formulas in which case

the degree sketch with respect to y need not be calculated.

The primary downside of using the BS is the increased optimization time. We populate

our sketches using a naive algorithm based on the SQL query found in Figure B.1 which we

134

Algorithm 5 Bound Sketch Generator.

1: procedure Bound Sketch(R(x, y),Mx,My) ▷ input relation R(x, y) with hash
partitions sizes Mx,My.

2: cR ← [0]Mx×My ▷ the count tensor, and both degree tensors are initiated as Mx ×My

tensors of zeros.
3: dxR ← [0]Mx×My

4: dyR ← [0]Mx×My

5: HMx ← new hashmap∶ ([My],W)→ Z+
6: HMy ← new hashmap∶ ([Mx],W)→ Z+
7: for t ∈ R(x, y) do
8: mx =H(t[x])
9: my =H(t[y])

10: cR[mx,my] + +

11: HMx(my, t[x]) + +
12: HMy(mx, t[y]) + +
13: if HMx(my, t[x]) > dxR[mx,my] then
14: dxR[mx,my]← HMx(my, t[x])

15: if HMy(mx, t[y]) > d
y
R[mx,my] then

16: dyR[mx,my]← HMy(mx, t[y])

17: return (cR, dxR, d
y
R) ▷ return sketches

SELECT
R inner . hx AS hx
R inner . hy AS hy ,
SUM(R inner . cnt) AS cnt ,
MAX(R inner . cnt) AS max degree

FROM(
SELECT

hash (x) AS hx ,
hash (y) AS hy ,
x ,
COUNT(∗) AS cnt

FROM R
GROUPBY hx , hy , x) AS R inner

GROUPBY hx , hy ;

Figure B.1: Nested SQL query used to generate BS.

135

feed to our modified postgres instance. In the case of multiple join attributes in a single table,

we must submit the query multiple times. While this method is sufficient to demonstrate

that more robust plans are possible, it is not optimized for efficient optimization time. In

the presence of FK indexes, the additional optimization time over the JOB is 4,795 seconds.

This additional optimization time is longer than the plan execution time for both default

Postgres and using our bounds. Without FK indexes, the additional optimization time is

6,450 seconds. Again, the additional optimization time is longer than plan execution time

for the plans generated by bounds, but insignificant compared to the plan execution time for

plans generated by default Postgres.

136

Appendix C

EXAMPLE OF NON-MONOTONICITY OF THE DEGREE
BOUND

We wish to demonstrate that the Degree-Bound formula may fail to be monotonic non-

increasing as the hash size grows. That is, we will construct an explicit example where

increasing the hash size will result in a higher join size bound. Note that the bounds presented

below differ from the partition budgeting scheme presented in Subsection 3.1.4. Consider

the following conjunctive query:

Q (x, y, z) :-R (x, y) , S (y, z) , T (z,w)

We populate the relational instances as follows:

x y

0 0

0 1

1 0

1 1

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
R

&

y z

0 0

1 0

2 1

3 1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
S

&

z w

0 0

1 1

2 2

3 3

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
T

=

x y z w

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q

137

We begin by considering hash size 1. That is, the generic (non-partitioned) degree bound

formula. We have 3 candidate bound formulas:

∣Q(x, y, z)∣ ≤ min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cR ⋅ d
y
S ⋅ d

z
T

dyR ⋅ cS ⋅ d
z
T

dyR ⋅ d
z
S ⋅ cT

Note the first formula above is in fact tight to the true cardinality of the join:

cR(0) ⋅ d
y

S(0,0)
⋅ dz

T (0)
= 4 ⋅ 1 ⋅ 1 = 4

We consider a hash size of 2. Define hash function h(ui) = i%2. That is, simply the modulo-2

function of the attribute value. We define the exact mapping below:

h(0) = h(2) = 0

h(1) = h(3) = 1

We may now explicitly describe the hash size 2 degree bound:

∣Q(x, y, z)∣ ≤ ∑
i,j

∈{0,1}

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cR(i) ⋅ d
y

S(i,j)
⋅ dz

T (j)

dy
R(i)

⋅ cS(i,j) ⋅ d
z
T (j)

dy
R(i)

⋅ dz
S(i,j)

⋅ cT (j)

(C.1)

This is where these formulas differ from the budgeting scheme. When using budgeting, the

first formula would not introduce partitioning to attribute z and the third formula would

not introduce partitioning to attribute y. We have cR(i) = 2, cS(i,j) = 1, and cT (j) = 2 for all

values i, j ∈ {0,1}. This also implies that the degree statistic for each relation, with respect

to either attribute, for each partition is also at least 1. That is dy
R(i)

, dy
S(i,j)

, dz
S(i,j)

, dz
T (j)

≥ 1

for all values i, j ∈ {0,1}. Furthermore, dy
R(i)

= 2 for all i ∈ {0,1}. This implies that Equation

138

C.1 may be bounded below as follows:

∑
i,j

∈{0,1}

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cR(i) ⋅ d
y

S(i,j)
⋅ dz

T (j)

dy
R(i)

⋅ cS(i,j) ⋅ d
z
T (j)

dy
R(i)

⋅ dz
S(i,j)

⋅ cT (j)

≥ ∑
i,j

∈{0,1}

min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 ⋅ 1 ⋅ 1

2 ⋅ 1 ⋅ 1

2 ⋅ 1 ⋅ 2

= ∑
i,j

∈{0,1}

2 = 8

Observe that the bound has increased despite the fact that hash size has increased. Moreover,

we have demonstrated this behavior in a strict sub-partitioning scenario. That is, each

partition using hash size 2 is a subset of a partition using hash size 1. This is in contrast to

a non strict sub-partitioning (i.e. where tuples are mixed between buckets during a change

in hash size).

139

Appendix D

GOOGLEPLUS MICROBENCHMARK TEMPLATE
EXAMPLES

The googleplus microbenchmark consists of aritificial multiqueries joining moderate size

social media graph communities. The data consits of several clusters drawn from Google’s

now defunt social media platform, GooglePlus [57, 103]. Data was originally taken from

Stanford SNAP [93] and may still be downloaded from Netzschleuder [118]. Benchmark

queries are constructed using a collection of standardized query templates where the com-

munity is chosen at random. Random filter predicates are implemented as simple modulo

predicates on the community member’s id. Example queries from the benchmark may be

found in Figures D.1, D.2, D.3.

140

1 SELECT COUNT(∗)
2 FROM
3 community 44 AS t0 ,
4 community 44 AS t1 ,
5 community 44 AS t2 ,
6 community 44 AS t3
7 WHERE
8 t0 . ob j e c t = t1 . sub j e c t AND
9 t1 . ob j e c t = t2 . sub j e c t AND

10 t2 . ob j e c t = t3 . sub j e c t AND
11 t0 . sub j e c t % 512 = 89 AND
12 t3 . ob j e c t % 512 = 174 ;

Figure D.1: Template 4a, Googleplus Community 44

1 SELECT COUNT(∗)
2 FROM
3 community 30 AS t0 ,
4 community 30 AS t1 ,
5 community 30 AS t2 ,
6 community 30 AS t3 ,
7 community 30 AS t4
8 WHERE
9 t0 . ob j e c t = t1 . sub j e c t AND

10 t0 . ob j e c t = t2 . sub j e c t AND
11 t0 . ob j e c t = t3 . sub j e c t AND
12 t3 . ob j e c t = t4 . sub j e c t AND
13 t0 . sub j e c t % 256 = 49 AND
14 t1 . ob j e c t % 256 = 213 AND
15 t2 . ob j e c t % 256 = 152 AND
16 t4 . ob j e c t % 256 = 248 ;
17 AND c i . movie id = mc . movie id ;

Figure D.2: Template 5c, Googleplus Community 30

141

1 SELECT COUNT(∗)
2 FROM
3 community 5 AS t0 ,
4 community 5 AS t1 ,
5 community 5 AS t2 ,
6 community 5 AS t3 ,
7 community 5 AS t4
8 WHERE
9 t0 . ob j e c t = t1 . sub j e c t AND

10 t1 . ob j e c t = t2 . sub j e c t AND
11 t2 . ob j e c t = t3 . sub j e c t AND
12 t2 . ob j e c t = t4 . sub j e c t AND
13 t0 . sub j e c t % 1024 = 615 AND
14 t3 . ob j e c t % 1024 = 765 AND
15 t4 . ob j e c t % 1024 = 384 ;

Figure D.3: Template 5e, Googleplus Community 5

	List of Figures
	List of Tables
	Introduction
	Research Contributions
	Thesis Organization

	Background and Related Work
	The Traditional DBMS Query Workflow
	Joins
	Cardinality Estimation Methods
	Entropic Bounds
	Streaming Query Optimization

	Tighter Cardinality Bounds
	Deploying Cardinality Bounds
	Evaluation
	Conclusion

	Generalizing Cardinality Bounds
	Integrating Bounding into the Optimizer
	Distributed Fanout
	Adaptive Execution
	Conclusion

	Threshold Functions over Stream Joins
	Method
	Generalization to Multijoins
	Certifying Quasiconvexity
	Evaluation

	Conclusion and Future Directions
	Bibliography
	The AGM Bound
	Single Pass Algorithm to Compute Bound Sketch
	Example of Non-Monotonicity of the Degree Bound
	Googleplus Microbenchmark Template Examples

