
Tighter Upper Bounds for Join Cardinality Estimates
Walter Cai

Allen School of Computer Science and Engineering, University of Washington
Seattle, Washington

walter@cs.washington.edu

ACM Reference Format:
Walter Cai. 2018. Tighter Upper Bounds for Join Cardinality Estimates. In
SIGMOD/PODS ’18: 2018 International Conference on Management of Data,
June 10–15, 2018, Houston, TX, USA. ACM, New York, NY, USA, Article 4,
3 pages. https://doi.org/10.1145/3183713.3183714

1 PROBLEM AND MOTIVATION
Despite decades of research, modern database systems still struggle
with multijoin queries. Users will often experience long wait times
occurring with unpredictable frequency detracting from the usabil-
ity of the system. In this work we develop a new method to tighten
join cardinality upper bounds. The intention for these bounds is
to assist the query optimizer (QO) in avoiding expensive physical
join plans. Our approach is as follows: leveraging data sketching,
and randomized hashing we generate and tighten theoretical join
cardinality upper bounds. We outline our base data structures and
methodology, and how these bounds may be introduced to a tra-
ditional QO framework as a new statistic for physical join plan
selection. We evaluate the tightness of our bounds on GooglePlus
community graphs and successfully generate degree of magnitude
upper bounds even in the presence of multiway cyclic joins.

2 BACKGROUND AND RELATEDWORK
The majority of recent work on cardinality estimation focuses on
the use and optimization of sampling methods [5, 7, 10, 12]. Sam-
pling is attractive since it inherently handles all common predicate
filters while also delivering unbiased estimates. Nevertheless, a
combination of data summarization techniques (e.g. multidimen-
sional histograms), hand-written rules, and strong assumptions on
the underlying data remain as the de facto estimation method for
production systems [11, 12]. For longer multijoins or cyclic joins,
both approaches become increasingly imprecise and inaccurate [9].
These poor estimates lead to poor physical plan selection, which
leads to poor performance. We argue providing guaranteed bounds
on intermediate join cardinality makes plan selection more robust.

The first step towards these bounds comes from analyzing the
connection between information theory and relational databases.
Framing relational joins as hypergraphs, Atserias et al. provide
upper bounds based on fractional edge covers [2]. More formally,
we are given a conjunctive query on relations {Rj } with variable

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4703-7/18/06.
https://doi.org/10.1145/3183713.3183714

Figure 1: Simple join upper bound generation illustration.

sets {xxx j } where xxx j ⊆ xxx :

Q (xxx) : −R1 (xxx1), . . . ,Rm (xxxn) (1)

It is natural to view the schema as a hypergraph H with vertices
corresponding to the variables x ∈ xxx and hyperedges corresponding
to the vertex-sets {xxx j } associated with each relation. A fractional
edge cover (u1, . . . ,un) of xxx on H is a set of values uj ∈ R≥0
corresponding to the hyperedges {xxx j } where for all vertices x , the
sum of the uj values corresponding to hyperedges containing x is
at least 1. That is, x is “covered”:

∀x ∈ xxx :
∑

j :x ∈xxx j
uj ≥ 1 (2)

We may bound the join cardinality as follows:

|Q | ≤
n∏
j=1
|Rj |

uj (3)

This class of bounds is coined the AGM bound. Khamis et al. extend
this research to include degree parameters [8]. Their contributions
generalize the information theory versus relational join analogy to
conditional entropic formulations. We refer to this broader class of
bounds as the KNS bound.

3 APPROACH AND UNIQUENESS
In this project we generate guaranteed join cardinality upper bounds
and demonstrate how these bounds are tightened. In Subsection
3.1, we define our core data structure; the Bound Sketch (BS). In
Subsection 3.2, we describe how the BS is used to generate and
tighten theoretical join cardinality upper bounds. We provide an
illustration of our method on a simple two table join in Figure 1.
Note that while our data structures are constructed offline, they
may be called at runtime for any joins involving the preprocessed
tables.

3.1 The Bound Sketch
We first describe the structure of the BS. Take relation T (yyy), with
the variables x ∈ yyy and random hash function h :W 7→ {1, . . . ,m}.
Tuples inT take values in the domainW |yyy | . Letyyy = (x1,x2, . . . ,xr),

https://doi.org/10.1145/3183713.3183714
https://doi.org/10.1145/3183713.3183714

SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA Cai

and let [m] denote {1, . . . ,m}. For each index value I ∈ [m]r , we
define the subset T I of relational instance T as those tuples t ∈ T
that hash to the index array I . That is:

T I =
{
t ∈ T : h(t[x1]) = I [x1], . . . ,h(t[xr]) = I [xr]

}
(4)

The BS onT is a collection of |yyy |+1-many |yyy |-dimensional tensors
of the formm × · · · ×m. Each cell of the initial tensor contains a
count value c . We define the I -th entry of this tensor as c I = |T I |.
Each cell of the remaining |yyy | tensors contains a degree value d .
Each of these tensors corresponds to a variable inyyy. We define the
degree parameter corresponding to variable x ∈ yyy as the maximum
degree for variable x from the subset T I . More formally:

d I [x] = max
w∈W ,

h (w)=I [x]

����
{
t ∈ T I : t[x] = w

}���� (5)

Alternatively, we may attain the value d I [x] from the following
SQL query:

SELECT MAX(c) FROM (SELECT COUNT(*) AS c FROM T I GROUP BY x);

Finally, we describe the BS formally as:([
c I

]
I ∈[m]|yyy | , . . . ,

[
d I [x]

]
I ∈[m]|yyy | , . . .︸ ︷︷ ︸

|yyy |-many

)
(6)

where x is a variable inyyy.

3.2 Our Cardinality Bounds
Next, we describe how the BS is used to generate guaranteed and
tight cardinality upper bounds. Consider schema instance

{R1 (xxx1), . . . ,Rn (xxxn)} (7)

and database instance D on the relations {Rk }. Define index array
I ∈ [m] |xxx | as before, and let I [xxx j] be the subarray of I whose values
correspond to the variables present in xxx j ⊆ xxx . Define a database
instance DI as a subset of database instance D where for each
relational instance Ri (D), we take the subset

Ri
(
DI
)
=

{
t ∈ Ri (D) : h (t [x]) = I [x], ∀x ∈ xxx j

}
(8)

That is, the set of all tuples in Ri (D) which hash to the correct index
values with respect to the variables in xxx j . Define database instance
subset DI =

{
R1
(
DI
)
, . . . ,Rn

(
DI
)}
. Given a conjunctive query

Q (D), observe that we may reconstruct the full conjunctive query
using only these DI :

Q (D) =
⋃

I ∈[m]|xxx |
Q
(
DI
)

(9)

As an illustrative example we describe a triangle query:

Q (x ,y, z) : −R (x ,y), S (y, z),T (z,x) (10)

At first, for each of the tables R, S,T , we consider only the maximum
degree and count values for the entire table (tensors of size 1 × 1).
We generate a collection of distinct upper bound formulas based
on the count and degree statistics we described in Subsection 3.1:

|Q (D) | ≤

cRdS [y], cSdT [z], cTdR [x]
cRdT [x], cSdR [y], cTdS [z]

c
1
2
Rc

1
2
S c

1
2
T

(11)

Figure 2: Tightening of bounds for GooglePlus triangles.

These formulas represent a subset of the KNS bound and each
corresponds to a different entropic formula. For a full discussion
of these formulae, we refer the reader to [8]. As we increase the
hash size m, we generate values from the KNS bound for each
subinstance DI . The sum over all index combinations provides an
upper bound on D:

|Q (D) | ≤
∑

I ∈[m]|xxx |
min

cR I dS I [y], cS I dT I [z], cT I dR I [x]
cR I dT I [x], cS I dR I [y], cT I dS I [z]

c
1
2
R I
c
1
2
S I
c
1
2
T I

(12)

4 EVALUATION, & FUTURE DIRECTIONS
We evaluate our bounds on a collection of 45 GooglePlus community
user-follower edge-sets [6]. The edge counts within the commu-
nities range between 228,521 and 1,614,977, and the cardinality of
the self-join triangles derived from these respective communities
range between 1,791,588 and 130,322,694. In Figure 2 we include
the progressive tightening of our bounds on triangle queries as
we increase BS size. Each line represents the proportion of our
upper bound over the true join cardinality for a single GooglePlus
community. We observe a tradeoff space between BS size and the
tightness of our bounds.

We argue that tight cardinality upper bounds may be easily used
in existing systems. The simplest approach is to inject the upper
bounds directly into the query optimizer in place of the cardinality
estimates. The bounds will reflect correlation across tables and
expensive join orderings will be avoided. Alternatively, the bounds
are paired with a sample-based unbiased estimate. These pairs are
then used to generate a distributional view of join cardinality similar
to past work in robust query optimization [3, 4] and bounded query
execution [1].

ACKNOWLEDGMENTS
This project is supported by NSF grant AITF 1535565.

Tighter Upper Bounds for Join Cardinality Estimates SIGMOD/PODS ’18, June 10–15, 2018, Houston, TX, USA

REFERENCES
[1] Michael Armbrust, Kristal Curtis, Tim Kraska, Armando Fox, Michael J. Franklin,

and David A. Patterson. 2011. PIQL: Success-Tolerant Query Processing in the
Cloud. CoRR abs/1111.7166 (2011). arXiv:1111.7166 http://arxiv.org/abs/1111.7166

[2] Albert Atserias, Martin Grohe, and DÃąniel Marx. 2013. Size Bounds and Query
Plans for Relational Joins. SIAM J. Comput. 42, 4 (2013), 1737–1767. https:
//doi.org/10.1137/110859440 arXiv:https://doi.org/10.1137/110859440

[3] Brian Babcock and Surajit Chaudhuri. 2005. Towards a Robust Query Optimizer:
A Principled and Practical Approach. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’05). ACM, New York,
NY, USA, 119–130. https://doi.org/10.1145/1066157.1066172

[4] Shivnath Babu, Pedro Bizarro, and David DeWitt. 2005. Proactive Re-optimization.
In Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’05). ACM, New York, NY, USA, 107–118. https://doi.org/10.
1145/1066157.1066171

[5] Yu Chen and Ke Yi. 2017. Two-Level Sampling for Join Size Estimation. In
Proceedings of the 2017 ACM International Conference on Management of Data
(SIGMOD ’17). ACM, New York, NY, USA, 759–774. https://doi.org/10.1145/
3035918.3035921

[6] Google. 2017. GooglePlus. https://plus.google.com/
[7] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios Olma, Robert

Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr: Lazily Approximating
Complex AdHoc Queries in BigData Clusters. In Proceedings of the 2016 Interna-
tional Conference on Management of Data (SIGMOD ’16). ACM, New York, NY,
USA, 631–646. https://doi.org/10.1145/2882903.2882940

[8] Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. 2016. What do Shannon-
type inequalities, submodular width, and disjunctive datalog have to do with one
another? CoRR abs/1612.02503 (2016). arXiv:1612.02503 http://arxiv.org/abs/1612.
02503

[9] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and
Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc. VLDB
Endow. 9, 3 (Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[10] Viktor Leis, Bernharde Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In CIDR.

[11] Postgres Development Core Team. 2017. PostgreSQL. https://www.postgresql.org/
[12] David Vengerov, Andre CavalheiroMenck, Mohamed Zait, and Sunil Chakkappen.

2015. Join Size Estimation Subject to Filter Conditions. PVLDB 8 (2015), 1530–
1541.

http://arxiv.org/abs/1111.7166
http://arxiv.org/abs/1111.7166
https://doi.org/10.1137/110859440
https://doi.org/10.1137/110859440
http://arxiv.org/abs/https://doi.org/10.1137/110859440
https://doi.org/10.1145/1066157.1066172
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1145/1066157.1066171
https://doi.org/10.1145/3035918.3035921
https://doi.org/10.1145/3035918.3035921
https://plus.google.com/
https://doi.org/10.1145/2882903.2882940
http://arxiv.org/abs/1612.02503
http://arxiv.org/abs/1612.02503
http://arxiv.org/abs/1612.02503
https://doi.org/10.14778/2850583.2850594
https://www.postgresql.org/

	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 The Bound Sketch
	3.2 Our Cardinality Bounds

	4 Evaluation, & Future Directions
	Acknowledgments
	References

