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ABSTRACT 

With the advent of multi-Global Navigation Satellite 
Systems (GNSS), many organizations will need to be able 
to evaluate GNSS coverage efficiently. Satellite visibility 
regions and Dilution-of-Precision (DOP) calculations 
represent a natural application of level set interface 
representation and tracking methods. Nevertheless, level 
set analysis has yet to be examined with respect to 
computational satellite performance simulations. 
Undergraduate students from the UCLA Research in 
Industrial Projects for Students (RIPS) program combined 
their efforts with engineers from The Aerospace 
Corporation (Aerospace) to develop computationally 
efficient visibility regions and DOP displays using Level 



Set Methods (LSMs); to the benefit of GNSS systems 
engineering and modeling & simulation efforts.  

For this study, the Aerospace RIPS student team 
developed, implemented, and assessed two methods. The 
first approach is a static method in which visibility and 
DOP are calculated from satellite data at discrete time 
steps. This approach was implemented and optimized in 
several ways in order improve accuracy and 
computational efficiency. A second approach is a 
dynamic method for visibility. The problem is initialized 
from satellite data, then the visibility information is 
evolved forward in time in a level set framework. Two 
implementations of the dynamic approach were studied, 
one following a Semi-Lagrangian advection scheme and 
the other making use of the Essentially Non-Oscillatory 
(ENO) finite difference discretization scheme; each with 
merits and drawbacks. Analysis of these methods was 
conducted and the current verdict is that the static 
approach is superior to both dynamic approaches in terms 
of efficiency, grid scaling, iteration scaling, and ease of 
implementation. In addition to visibility and DOP 
displays, the static LSM has shown promise in tracking 
the merging and separation events of visibility zones and 
three methods were developed to approximate these event 
times. 

 

INTRODUCTION  
 
The effort to maximize GNSS coverage includes the 
evaluation of several performance-based metrics that 
depend on the geometry of in-view satellites relative to 
each user. When evaluating coverage, GNSS analysts 
consider all potential satellite failures because 
constellation management (and sustainment) efforts must 
provide high assurance that sudden failures will not cause 
operational interruptions. GNSS performance studies 
include high precision positioning, high assurance flight 
and maritime safety, and navigation in difficult terrain 
(terrain-masking of satellites). Even with utilization of a 
cluster of multi-node computers, this effort requires (at its 
heart) very efficient calculations of geometry-based 
performance metrics and their derivatives. Current 
efficient algorithms developed by Aerospace have 
focused on grid evaluations and are CPU-intensive. New 
metrics and analysis capabilities need to be developed to 
address new receivers that use all satellites in-view. 

The current methodology to determine the 
visibility of GNSS satellites is accurate and useful; 
however, it is also computationally intensive. Similarly, 
the study of DOP through space and time is a large 
computational challenge. For example, a 3° grid on the 
Earth’s surface evolved through a ten-minute time 
interval requires the calculation of approximately 
300,000, 4x4 matrix inverses. Additionally, one must take 
into account satellite failures among other tasks, which 
increase the computational cost by a factor of 1012. Faced 
with these issues, Massatt and Rudnick [1] derived an 

efficient formula for calculating PDOP with four satellites 
in view. 

Level Set Methods (LSMs), introduced by Osher 
and Sethian in [2], are efficient numerical techniques for 
the representation and tracking of implicitly defined 
interfaces, curves, shapes, and surfaces on an Eulerian 
grid. They have flourished in a variety of fields such as 
fluid mechanics, materials science, computer graphics and 
animation, and imaging science. LSMs have the unique 
ability to automatically handle topology changes such as 
merging and separation of evolving interfaces. The 
potential for a dramatic reduction in processing time is 
especially important in constellation design, optimization, 
and maintenance applications where repeated evaluations 
of performance measures are necessary in an iterative 
process (e.g., the number and variety of failures for a 
thirty-satellite constellation or in a combined GNSS 
constellation). It is the objective of this research 
collaboration (between Aerospace and UCLA’s Institute 
for Pure and Applied Mathematics) to study the 
application of LSMs to manage space-based 
geopositioning systems and geolocation technologies. 
LSMs could prove to be more time efficient, while 
maintaining the accuracy of systems currently employed 
by analysts at Aerospace. It is for this reason that the 
Aerospace RIPS student team implemented LSMs to 
measure visibility and DOP, and assessed computational 
benefits.  

The methodology of the research (and outline for 
the report) includes an introduction to the mathematics for 
determining user position with GNSS systems and DOP. 
The application of LSMs to the satellite geometry and 
GNSS performance domains will be described in detail. 
For this study, the Aerospace RIPS student team 
successfully developed, implemented, and assessed two 
methods: a static approach and a dynamic approach. 
Further efforts have been dedicated towards the 
optimization of the computational complexity involved 
with these strategies and their implementation using 
Matlab. In addition to visibility zones and DOP 
calculations, the static LSM has shown promise in 
tracking the merging and separation events of visibility 
zones and three methods were developed to approximate 
these event times. 

The results of this study will be used to: (1) 
Determine when and where users can count on sufficient 
coverage, (2) Optimize the GNSS satellite configuration, 
(3) Determine how coverage changes when satellites fail, 
(4) Determine how to best alter the GNSS satellite 
configuration to best use the reduced number of satellites 
resulting from a satellite failure, and (5) Determine where 
new satellites should be placed in the satellite 
constellation to produce the best possible coverage. 
 
 
 



VISIBILITY REGIONS  
 
Calculations for visibility and DOP incorporate the 
Cartesian, Earth Center Fixed (ECF) frame, and East 
North Up (ENU) frame approaches to three-dimensional 
positioning around the earth. In this work, the earth is 
represented by an ellipsoid of revolution of given 
equatorial radius and flattening. Points on this 
mathematical surface are specified by their latitude (φ) 
and longitude (λ) coordinates taken from the WGS 84 
model.  

Visibility determination primarily uses the ENU 
frame. In order for a satellite to be considered visible 
from a position on the surface of the earth it must share a 
direct line of sight with that location. Furthermore, the 
satellite's elevation must exceed a 5° mask angle; a 
constant chosen in order to avoid common obstructions 
from trees, buildings, and general topographical variation. 
 

 
Figure 1: Elevation Angle, as defined from surface 
tangent plane up towards the satellite in the plane 
spanned by the zenith and the vector between surface 
location and satellite. Image sourced from [3]. 
 

A user's position is determined by measuring the 
time it takes for a signal to travel between the user and 
multiple satellites and from this deriving relative 
distances. Hence, one satellite will generate a sphere of 
possible locations. A pair of satellites will generate the 
intersection of two spheres; a circle. Three satellites will 
further narrow down the number of possibilities to only 2 
points, and a fourth satellite will narrow down the 
position to a single location. With 31 operational satellites 
in the constellation, at any given time there will be at least 
6 satellites present overhead. Because of this fact, for 
testing purposes, we utilized a reduced 24 satellite 
constellation in order to more easily identify errors and 
areas of interest on our plots. 
 

DILUTION OF PRECISION  
 
Even with multiple visible satellites overhead, GNSS user 
error can still be appreciable. To manage error potential, 
we construct Dilution of Precision (DOP) values. These 
are metrics that relate the geometry of visible satellites to 
the likelihood and magnitude of user error. 

We define DOP with the following formulations: 
Let index i denote the ith satellite. Define vectors si, from 
the center of the earth to the satellite; and u, from the 
center of the earth to user position on the earth's surface, 
as illustrated in Fig. 2. 
 

 
Figure 2: Pseudoranges. 

 
Define ri=si-u as the vector from the user to the satellite. 
We may define the observed and model pseudoranges, an 
approximate distance measurement between the satellite 
and user with the following equations. We use the term 
pseudorange in this case since ri is a measurement from a 
clock-biased range. 
 

�
𝜌𝑖𝑜𝑏𝑠 = �𝑟𝑖𝑜𝑏𝑠� + 𝑐[∆𝑇 − ∆𝑡] + �∆𝐼𝑜𝑛 + ∆𝑇𝑟𝑜𝑝𝑜 + ∆𝜖𝑖�

= �𝑟𝑖𝑜𝑏𝑠� + 𝑐[∆𝑇 − ∆𝑡] + [∆𝑒𝑖]
𝜌𝑖𝑚𝑜𝑑 = �𝑟𝑖𝑚𝑜𝑑�.

� 

 
In the above expressions, ρi denotes the ith satellite's 
pseudorange measurement; ri the geometric range 
between the satellite and user. The values ΔT and Δt 
define the offsets of the user and satellite clocks 
respectively from GNSS time, while c is the velocity of 
the signal in a vacuum. Terms ΔIon, ΔTropo, Δεi represent 
distortion from signals propagating through the 
Ionosphere, Troposphere, and unmodeled noise, 
respectively. These three terms are compacted into the 
single term Δei. 

The pseudorange can be linearized by expanding 
ρimod in a Taylor's series expansion around an approximate 
user position û, then ignoring higher order terms. 
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where Δξi also includes Δei. These equations may be 
equivalently written in matrix form: 

 

⎣
⎢
⎢
⎢
⎡
∆𝜌1
∆𝜌2
∆𝜌3
⋮

∆𝜌𝑛⎦
⎥
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⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
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𝑎𝑥1 𝑎𝑦1
𝑎𝑥2 𝑎𝑦2

𝑎𝑧1 1
𝑎𝑧2 1

𝑎𝑥3 𝑎𝑦3
⋮ ⋮
𝑎𝑥𝑛 𝑎𝑦𝑛

𝑎𝑧3 1
⋮ ⋮
𝑎𝑧𝑛 1⎦

⎥
⎥
⎥
⎥
⎤
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⎣
⎢
⎢
⎢
⎡
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∆ξ3
⋮
∆ξ𝑛⎦

⎥
⎥
⎥
⎤

 

 
∆𝜌 = 𝐻∆𝑢 + ∆ξ. 

 
We may solve for the above equation computationally 
using least squares to minimize |Δξ|2. Let Δu* denote the 
solution while 𝐻� is the pseudo-inverse matrix: 
 

∆𝑢∗ = (𝐻𝑇𝐻)−1𝐻∆𝜌 = 𝐻�∆𝜌. 
 

Assuming pseudorange covariance is symmetric over 
rotations, we may define user covariance as follows: 

 
𝑐𝑜𝑣(∆𝑢) = 𝐸�∆𝑢∗∆𝑢∗𝑇� 

= 𝐸�𝐻�(∆𝜌∆𝜌)𝐻�𝑇� 
= 𝐻�𝑐𝑜𝑣(∆𝜌)𝐻�𝑇 

= 𝜎2𝐻�𝐻�𝑇 
= 𝜎2(𝐻𝑇𝐻)−1 

= 𝜎2

⎣
⎢
⎢
⎢
⎡ 𝑑𝑥

2 𝑑𝑥𝑦
𝑑𝑥𝑦 𝑑𝑦2

𝑑𝑥𝑧 𝑑𝑥𝑡
𝑑𝑦𝑧 𝑑𝑦𝑡

𝑑𝑥𝑧 𝑑𝑦𝑧
𝑑𝑥𝑡 𝑑𝑦𝑡

𝑑𝑧2 𝑑𝑧𝑡
𝑑𝑧𝑡 𝑑𝑡2 ⎦

⎥
⎥
⎥
⎤
. 

 
Lastly, we may define the various DOP values 
(Geometric DOP, Positional DOP, Horizontal DOP, 
Vertical DOP, and Time DOP): 
 

𝐺𝐷𝑂𝑃 =  𝑡𝑟[(𝐻𝑇𝐻)−1] = �𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 + 𝑑𝑡2 

𝑃𝐷𝑂𝑃 = �𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2  

𝐻𝐷𝑂𝑃 =  �𝑑𝑥2 + 𝑑𝑦2 

𝑉𝐷𝑂𝑃 =  �𝑑𝑧2 

𝑇𝐷𝑂𝑃 =  �𝑑𝑡2. 

Generally, GDOP measurements at or below 1 represent 
highly accurate readings, whereas high values such as 20 
denote extremely poor accuracy with errors as high as 300 
meters. 

 

LEVEL SET METHOD 
 

The Level Set Method is a numerical technique for 
representing sharp interfaces, curves, shapes, and surfaces 
as they move over a fixed Eulerian grid. An advantage of 
LSMs in comparison to explicit interface tracking 
techniques is that there is no need to parameterize the 
object(s), thus complex topological changes are handled 
implicitly. The main drawback of LSMs is that they are 
not conservative, therefore a loss of mass can occur, 
particularly with coarse numerical resolutions. 
 To illustrate the level-set approach, consider the 
domain presented in Figure 3.  We describe Ω- by the set 
of points, x, such that ψ(x)<0.  Likewise, we describe Ω+ 
by the set of points such that ψ(x)>0. The interface Γ is 
implicitly defined by the zero level set, ψ(x)=0.  In the 
context of this work, Ω- corresponds to the regions where 
a satellite is visible and Ω+ corresponds to the regions 
where it is not. The evolution of the interface is then 
given by the evolution of the level set function, ψ, and 
obeys the following Hamilton-Jacobi equation, 
 

𝜓𝑡 + V ∙ ∇𝜓 = 0, 
 
where V is an externally generated velocity field. Since 
the interface is implicitly defined, as the interface evolves 
in time, merging and/or separation of regions are handled 
automatically without any special logic or handling.  
Additionally, geometric quantities such as the normal to 
the interface and the interface mean curvature can be 
easily calculated from the level set function. For more 
details about the level set method, the interested reader is 
referred to [4]. 
 

 
Figure 3: A schematic of the level-set representation of 

the domain. 
 

STATIC APPROACH FOR VISIBILITY AND DOP 
 
In general, a level set function, ψ, is not unique, but rather 
can be any arbitrary function that is smooth and 
differentiable and satisfies the interface constraint.  The 
traditional choice in the level set community is to use a 
signed-distance function.  In fact, many algorithms 
periodically re-initialize the level set function to a signed 



distance function in order to maintain good numerical 
properties. For this work, we have chosen a level set 
function which is defined as follows: 
 
𝜓(𝜑, 𝜆, 𝑡𝑖𝑚𝑒) = 𝑀𝑎𝑠𝑘𝐴𝑛𝑔𝑙𝑒 − 𝐸𝑙𝑒𝑣𝐴𝑛𝑔(𝜑, 𝜆, 𝑡𝑖𝑚𝑒), 

 
where ‘ElevAng’ stands for Elevation Angle as defined as 
the angle from the plane tangent to the earth's surface up 
towards the vector connecting the surface location and 
satellite (see Fig. 1). Although this choice of ψ is not a 
signed distance function, it is very convenient for the 
application at hand because it is not overly steep, it is 
smooth and differentiable, and it provides a measure of 
the distance of any particular grid node to the interface 
which we can utilize in adaptive grid meshing strategies.  
In this model, visibility is considered binary; a satellite is 
visible if and only if ψ <0. 
 The static approach for visibility regions uses 
discrete time steps to track the interface as it moves, as 
opposed to the dynamic approach which utilizes 
information from previous time steps. For the static 
approach, we construct a two-dimensional uniform grid to 
represent the surface of the earth. To be more precise, we 
implement an Equirectangular Projection defined as 
 

𝑥 = 𝜆𝑐𝑜𝑠𝜙1 
𝑦 = 𝜙 

 
where λ is longitude, ϕ is latitude, ϕ1 are the standard 
parallels (north and south of the equator) where the scale 
of the projection is true, x is the horizontal position along 
the map, and y is the vertical position along the map. 
Using this mapping, we get the most direct visualization 
of our problem over the earth, though we see distortion 
along the north and south poles in terms of area and 
curvature. Once we have this uniform grid, we use our 
level set formulation to calculate level set functions for 
each satellite in orbit. Operations on the individual level 
set functions allow us to visualize regions of interest.  For 
example, consider the visible regions of from two 
satellites, ψA and ψB.  The boundary of the region visible 
by both satellites can be calculated from the zero 
isocontour of ψAB = min(ψA, ψB).  Figure 4 is an 
illustration of the number of satellites that are visible at 
time t=14400s, considering only the 24 satellite 
constellation. The horizontal axis represents the latitude 
and the vertical is the longitude, which encompasses the 
entire globe in the Cartesian coordinate system.  
 

 
 
Figure 4: Visibility regions for a 24 satellite constellation 

at time t = 14400s. 
 

PERFORMANCE OPTIMIZATION 
 
Uniform grids, while convenient to implement, can be 
computationally expensive at high resolutions. For this 
reason, we have investigated several techniques to 
improve efficiency. The Narrow Band Level Set Method 
[5] and the use of nonuniform, adaptive grids such as 
quadtree grids [6, 7] are two such approaches which we 
have investigated. Matlab's optimal performance involves 
pre-allocating matrices and using matrix operations 
instead of loops. Thus when implementing optimization 
methods, we had to take into account Matlab's structure. 
 The Narrow Band Method is a technique in 
which a narrow band is placed around the interface and 
only the points of the mesh inside that band are stored so 
that the computation is restricted locally near the 
interface. This approach has been shown to reduce 
computation from an initial operation count of O(N2) to a 
count of O(kN), where N is the size of each grid 
dimension and k is the width of the narrow band. We used 
the idea of the Narrow Band Method to construct our 
Pseudo-Narrow Band Method, taking into consideration 
Matlab's optimization. The algorithm that we implement 
contains two different mesh matrices. The first matrix, A, 
stores the initial values of the broad grid. Once the 
regions that have a change of sign in the level set function 
are detected, the points for the narrow band are selected. 
B will then be the matrix of a much finer mesh grid that 
will store the values of ψ inside the narrow band. 
 Figure 5 illustrates the implementation of the 
algorithm. We start by having a broad uniform grid of 
size n x n which is the map at different latitudes and 
longitudes. The green dots, gi with i = 1,2,3,4, represent 
points within Ω- near the interface.  The red stars are the 
neighboring points above, below, and to both sides of the 
green. If rj are these red points, since ψ(rj) > 0, then there 
must be points of the interface in between the green and 



red dots. The blue dots in the figure represent grid nodes 
on the resulting fine mesh. There is a trade-off between 
accuracy and computation time in the selection of the 
width of the narrow band. The problem that may be 
encountered is that if the geometry of the interface 
involves sharp corners and the width of the band is too 
narrow, then these corners may not be captured by the 
algorithm. The final step is defining the fine grid. Each 
cell has a side length of 1/n, and thus they can be broken 
into m2 different cells of side length 1/mn. Figure 5 shows 
the example of m=2, which makes the resolution of the 
mesh have four times as much information. This new 
mesh will have a resolution of nm x nm, but will have 
made fewer calculations compared to a uniform mesh 
map of the same resolution. 
 

 
Figure 5: A schematic of the Pseudo Narrow Band 

algorithm. 
 
The quadtree approach [6, 7] is a tree-based data structure 
in which the entire domain is encompassed within a root 
cell. Cells near the interface are recursively divided into 
child cells until a specified minimum cell size is reached. 
This has the effect of concentrating the grid nodes near 
the interface. This approach requires a more complex 
implementation. Two objects will be required for the 
quadtree construction, a cell and a node. A node is simply 
a point on the grid with the latitude and longitude 
coordinates as well as its interface value, N_i = (θ, λ, ψ). 
A cell has the form of a square in the grid and will be 
defined as an object with two properties: the length of the 
side of the cell (referred to as the size) and the four nodes 
that it has at each corner. Figure 6 demonstrates the 
process of cell creation. A cell will split if one of its 
vertices meets the following Whitney decomposition 
criteria [7], which is a measure of distance to the 
interface: 

min
𝑣∈𝑛𝑜𝑑𝑒𝑠(𝐶)

|𝜓(𝑣)| ≤ 𝐿 ∙ 𝑑𝑖𝑎𝑔(𝐶), 

where L is a Lipschitz constant taken to be approximately 
one. The splitting will proceed until it gets to a certain 
level where the cells' size reaches a tolerance parameter. 
 Figure 7 illustrates the evaluated points of a 
quadtree grid for GDOP values over a domain that ranges 
from 0 to 180 for the latitude and -90 to 90 for the 
longitude. The color of the points in Figure 7 are different 
levels of GDOP that range from 1.419 to 10. The actual 
maximum of GDOP is around 20 for a few points, but for 
display reasons they were set to a GDOP of 10. We can 
observe that as we get closer to the interface, the amount 
of points greatly increases. 
 

 
Figure 6: Quadtree data structure and cell design. 

 

 
Figure 7: GDOP plot displaying the evaluated nodes of a 

quadtree grid. 
 

DYNAMIC APPROACH FOR VISIBILITY 
REGIONS 
 
In the dynamic approach, the level set function, ψ(x,t), is 
initialized at time t=0 and evolved forward in time by 
means of solving the Hamilton-Jacobi level set equation, 
 

�𝜓𝑡 + 𝑉(𝑥, 𝑡) ∙ ∇𝜓 = 0
𝜓(𝑥, 0) = 𝜓0.

� 

 
The velocity field, V, is unique to the physics of the 
problem, and in our case is determined by the motion of 
the satellite. Since this equation cannot be explicitly 
solved, we approximate the solution using finite 
difference schemes. 

As we evolve ψ over time according to our 
problem parameters we observe that the level set function 



may develop steep gradients or other undesirable 
properties. Rather than the traditional approach of re-
initializing the level set function to a signed distance 
function [8], which involves solving a computationally 
expensive nonlinear PDE, we instead call our static level 
set algorithm to reinitialize ψ. One thing to note is that a 
three-dimensional description of our problem is necessary 
in the dynamic approach in order to relate satellite motion 
to the interface velocity field, whereas we were able to 
reduce the static level set approach to a two-dimensional 
map projection of the earth's surface. 

In this work, we utilize two approaches to 
solving the level set equation. The first approach is a 
finite difference discretization that uses an implicit Euler 
time discretization along with the third-order accurate 
Essentially Non-Oscillatory (ENO) [9] spatial 
discretization scheme.  The advantage of this approach is 
that implementation is straightforward and the numerical 
accuracy is very good.  The disadvantages of this 
approach are that the time step is limited by a CFL 
condition for numerical stability and the ENO algorithm 
requires evenly-spaced grid nodes so we are limited to a 
uniform grid. 

The second implementation uses a Semi-
Lagrangian approach [10] for the level set advection 
equation. This approach is unconditionally stable, so the 
time step is only constrained by accuracy requirements. 
Additionally, this approach is well-suited for nonuniform 
grids such as a quadtree/octree or narrow-band 
approaches. The primary disadvantage of the Semi-
Lagrangian scheme is that it has a propensity for 
numerical diffusion. 

 

RAYCASTING AND DYNAMIC HORIZONS 
 
While the dynamics of the satellites and the earth are 
well-studied, it is a more challenging task to track the 
dynamics of our visibility interfaces as they are projected 
onto the earth.  In determining the velocity field which is 
responsible for advecting the level set function, we draw 
heavily upon the ideas used in Tsai, et al. [11] and their 
raycasting approach to visibility. 
 

 
Figure 8: A diagram displaying the basis behind the 

raycasting technique. We see that since y comes after x it 
is considered blocked. Figure is from Tsai et al. [11]. 

 
We begin with some point x0 in our domain which we 
consider a source or observer, which in all  
directions casts out visibility rays. Also embedded in our 
domain are a series of obstacles or occluders, which will 
be represented by an occluding level set function Φ. Let 
us say we are interested in the direction from our source, 
x0, to some point x in our domain. We define the 
following 

𝑟(𝑥, 𝑥0) =
(𝑥 − 𝑥0)
|𝑥 − 𝑥0| . 

 
We also adopt the convention in saying that some point x1 
is before x2 if r(x0,x1) = r(x0, x2) and |x0 - x1| ≤ |x0 - x2|. 
Furthermore we can make the relation strict by simply 
replacing ≤ with <. As an example if we refer to Figure 8, 
we would then say that x is before y. The reason this 
concept is introduced is because we need to make it clear 
how these visibility rays interact with the occluding 
objects in our domain. Referring again to Figure 8 and 
keeping in mind the sphere around x0, define the 
following 
 

𝜌(𝜃) = �
𝑚𝑖𝑛𝑥∈ℝ𝑑{|𝑥 − 𝑥0||𝑟(𝑥, 𝑥0) = 𝜃,Φ(𝑥) ≤ 0}

∞, 𝑖𝑓 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡
� 

 
Thus our implementation must be the requirement that 
ρ(r(x,x0)) ≤ |x-x0|. For clarity sake, it is helpful to think of 
r(x,x0) as referring to the direction of our rays and ρ(θ) 
referring to the length of these rays. In our particular 
problem we can very naturally consider x0 to be a GNSS 
satellite with the visibility rays being the range of the 
signal it sends. Our domain would then have one large 
occluding object, the earth, which blocks these signals 
being sent by our satellites. Very naturally, due to the size 
of the earth, outlines of these visibility regions will 
become apparent on the earth and shall be referred to as 
the horizon points. 



 

 
Figure 9: A diagram displaying how visibility zones 

(outlined by cyan) would be displayed. The green dot 
represents the satellite and the bunny would be the earth. 

Image is from Tsai et al. [11]. 
 
Mathematically speaking we define the horizon points as 
the following 
 
𝐻 = �𝑥 ∈ ℝ3�Φ(𝑥) = 0, (𝑥 − 𝑥0) ∙ ∇Φ = − sin �

𝜋
36
�� 

 
where the -sin(π/36) term comes from the 5° mask angle 
we are working with. Since this is a dynamic problem, the 
velocity field also changes in time.  We propose the 
following candidate for a 3-D vector field we can use to 
advect our horizon, given a satellite location, S(t): 
 

� ∇Φ
(𝑥 − 𝑆(𝑡))𝐷2Φ� �

𝑑𝑥
𝑑𝑡
�
𝑇

= �
0.

𝑑
𝑑𝑡
𝑆(𝑡) ∙ ∇Φ� 

 
While this is an accurate description, there are difficulties 
with this approach due to the need to solve a linear system 
for each point we want to evaluate. In addition to this 
efficiency problem, there is a free variable each time we 
solve this system which is difficult to track for each point. 
The current conjecture for this free variable is that it 
accounts for movement along the interface as we shift our 
horizon in time. 
 While this lays down the necessary groundwork 
for calculating how our horizon moves with respect to a 
satellite through time, there is still the initial task of 
defining the horizon at some initial time. The horizon can 
be defined as the intersection of the edge of the visible 
regions and the earth. Mathematically we can write this 
as: 
 

𝐻 = {𝑥 ∈ ℝ3|Φ(𝑥) = 0} ∩ {𝑥 ∈ ℝ3|𝜓(𝑡, 𝑥) = 0}. 
 
Thus we define our 3D level set function to be: 
 

𝜓(𝑡, 𝑥) = |𝑥 − 𝑆(𝑡)| sin(5°) + �𝑥 − 𝑆(𝑡)� ∙ ∇Φ(𝑥). 
 
When implementing this dynamic approach our goal was 
to find the most natural coordinate system and method 
such that we could easily extract the level set information 

we were interested in while minimizing the necessary 
computations. Thus our initial approach was to use a 
Cartesian grid that was indexed by longitude, latitude, and 
height off the surface of the earth. The ease in using this 
pseudo-spherical indexing to calculate information 
needed, along with the simplicity in converting into 
Cartesian coordinates where necessary made this 
approach very enticing. However, one initial challenge 
with this sort of coordinate indexing is that it results in 
uneven spacing, meaning we can not use the usual ENO 
scheme to solve our Hamilton-Jacobi equation. However 
with a nonuniform grid we can still utilize the Semi-
Lagrangian approach. 
 In order to solve for the velocity field in our 
chosen system, which gives us information how the 
horizon corresponding to one satellite moves, we define a 
function up(θ, λ, h), which corresponds to 
 

∇Φ|𝜃,𝜆,ℎ ≈ � ∇Φ
|∇Φ|�(𝜃,𝜆,ℎ)

= 𝑢𝑝(𝜃, 𝜆, ℎ) 

 
where Φ is a level set function that defines the earth's 
surface. Using this information along with first order 
differencing to approximate S'(t), we can easily get the 
information for x, S(t), S'(t), grad(Φ). However when 
dealing with the Hessian, D2Φ, we need to take the 
following derivatives upx, upy, upz which is where 
difficulty arises. Since our coordinates are indexed in 
longitude, latitude, and distance from the surface of the 
earth, implementing first order differencing with respect 
to Cartesian coordinates poses a problem. The current 
workaround this issue is to use the up information 
calculated over our pseudo-spherical grid and interpolate 
it to get the desired information when shifting in x, y, and 
z directions. Once all this information is calculated, 
Matlab's linsolve function is used to solve the linear 
system at each point over our grid, giving us u, v, w the 
corresponding x, y, z components of our vector field. 
 Once we have the vector field for one satellite, 
we implement the Semi-Lagrangian algorithm as 
discussed in [7]. As the simulation is run, we periodically 
reinitialize the level set functions with the static method 
in order to preventing numerical noise and distortion. 
 Overall, the main advantages of this Semi-
Lagrangian approach are the stability in time that lets us 
choose the time step, the ease in calculating grad(Φ), and 
how naturally our grid corresponds to the surface of the 
earth. After solving for our new shifted level set function, 
ψ, we want to isolate the information corresponding to the 
surface of the earth. Since our grid is constructed such 
that it contains isocontours of the earth level set function 
Φ, then we can easily pick out the contour of the earth's 
surface. One large drawback to this method is that we 
need a 3 dimensional band around the earth's surface to 
ensure our vector field remains intact, requiring a 
minimum of 3 times the calculation for a similar 2 
dimensional calculation. For example, with the static 



method in order to get a 120x120 plot of the earth's 
surface, 1202 = 14400 grid points are required, while this 
comparable Semi-Lagrangian method would requires 
(1202)(3) = 43200 points of computation. Another large 
drawback to this Semi-Lagrangian method is the number 
of interpolations needed in the algorithm along with 
calculating the Hessian, as these 3 dimensional 
interpolations scale very poorly with grid size. So while 
for low grid sizes, the Semi-Lagrangian method seems 
enticing due to its natural benefits, there are many 
drawbacks in computational time when it comes to larger 
and more accurate calculations. 
 To avoid the drawbacks in grid size scaling 
resulting from excessive interpolation, we choose a 
uniform Cartesian grid that lets us easily implement an 
Essential Nonoscillatory Polynomial Interpolation of data 
(ENO) algorithm and shift up(θ, λ, h) in the x, y, z 
directions. These two changes allow us to forgo the 
multiple interpolations needed. In addition, it lets our 
dynamic implementation become much faster and 
efficient at larger grid sizes, which is needed to reach the 
threshold levels of accuracy in a feasible time. There are 
some drawbacks to this approach, in that calculating the 
gradient, grad(Φ) = up(θ, λ, h), at each (x, y, z) coordinate 
requires utilizing Matlab's fsolve function in its 
Optimization toolbox to get 
 

𝑝𝑖𝑛𝑣𝑒𝑟𝑠𝑒: [−90,90) × [0,360) × ℝ → ℝ3 
(𝜃, 𝜆, ℎ) ↦ (𝑥, 𝑦, 𝑧). 

 
While we only calculate pinverse once over point set 
representation, this inverse operation can add a 
considerable amount of time as we scale up our grid size. 
Another additional problem is that the grid configuration 
does not directly provide information about visibility on 
the earth's surface. Thus if want to use our data to get the 
corresponding information on the surface of the earth, we 
run a tricubic interpolation, which is another costly 
operation. 
 Since the implementation uses third-order ENO, 
or ENO3, we see much less distortion versus Semi-
Lagrangian approach, which allows us to reinitialize with 
the static method less frequently. Together with the 
Narrow Band construction to save on evaluation time, we 
see improvements of this ENO approach. The main 
deterrent to the Dynamic ENO method is utilizing the 3-D 
information we generate and translating it to the surface 
of the earth. We can do a cubic interpolation of the earth's 
surface, but this drastically increases computation time. 
Also, due to the CFL condition when working with this 
ENO approach, the time step restriction can be severe, 
especially as the grid resolution is increased. 
 

GRID SCALING AND TIMING RESULTS 
 
Table 1 contains computation time and grid size scaling 
results for a 3-D Static and both developed Dynamic 

approaches for calculating visibility zones. We see that 
the Static approach has the best performance and scaling 
with grid size. Between the two Dynamic methods, the 
Dynamic ENO approach has better performance than the 
Semi-Lagrangian. Also, as we would expect, the use of 
the Narrow Band for the Static Method substantially 
improves computation time over using the full grid.  
 

Grid 
Size 

Static 
(Narrow 
Band) 

Static Dynamic ENO 
(Narrow Band) 

Dynamic Semi-
Lagrangian 

125 1.93s 4.06s 5.64s 9.08s 
1000 13.10s 10.05s 24.11s 50.22s 
8000 89.22s 136.9s 169.8s 416.7s 
27000 273.5s 472.6s 579.0s 1722.13s 

Table 1: Grid Size Scaling. 
 

However of practical interest to us is not 3-D 
Visibility information, but the 2-D Visibility on the earth's 
surface. Thus we are interested in the time and accuracy 
of generating and interpolating our 3-D information into 
2-D information. Figure 10 is a plot of the computation 
time versus grid resolution for the Static 2D approach and 
the Dynamic ENO approach including interpolation onto 
the surface of the earth. As can be expected, the Static 2D 
approach is more computationally efficient, particularly at 
high resolutions. 

 
Figure 10: Resolution scaling for the Dynamic ENO 

approach and the 2D Static approach for Visibility Zones. 
 

DYNAMIC DILUTION OF PRECISION 
 
Due to the nature of Dilution of Precision values, the 
dynamic approach presents very difficult problems as a 
simulation method. For visibility, it is possible to track 
visible region boundaries for each satellite with an 
independent vector field operating on every interface and 
then overlaying the graphs using a sum value for each 
time step. In contrast, DOP values require simultaneous 
input from every satellite in the constellation. Hence, each 



satellite would need to be tracked concurrently in order to 
devise a feasible vector field. 
 Moreover, unlike visibility, DOP yields a 
continuum of possible values and hence there do not exist 
precise interfaces to track, making level set representation 
cumbersome. The difficulty in locating interfaces also 
limits the feasibility of employing optimization 
techniques on adaptive grids since every grid point will 
display nontrivial changes in value at all times. These 
issues are further complicated by discontinuous jumps in 
DOP that occur at the boundaries of satellite visibility 
regions. Therefore, in order to fully encode an accurate 
approximation for the transition of DOP values through 
time, one would have to derive a velocity field that 
correlates the motion of the satellites as well as their 
orientation with respect to each other in space and time. 
 Due to the difficulty in constructing a suitable 
vector field, we have not developed a true dynamic DOP 
implementation. However, we can achieve a semi-
dynamic DOP. Since calculations of DOP values heavily 
rely on visibility calculations, we can evolve the visibility 
calculations with the dynamic approach then statically 
calculate the Dilution of Precision values. 
 

MERGING OF VISIBILITY REGIONS 
 
Knowing when two visibility regions merge or separate, 
or rather simply when the regions begin or end 
overlapping periods, is vital since it can mark the exact 
time when positioning calculations may begin operation 
or fail for a given location on earth's surface. The static 
level set approach may be used to estimate these event 
times. 
 Consider arbitrary satellites i, j and their 
associated level set functions, visibility regions, and 
interfaces; ψi, ψj, Ωi

-, Ωj
-, Γi, Γj, respectively, where ψi, ψj 

are the level set functions employed in the static method. 
 Taking an area tracking approach, we define the 
function ψmax = max{ψi, ψj} which will have negative 
values only in regions where both satellites are visible. 
Our purpose is to detect the area of the intersection 
region, or simply, the number of grid points in Ωi ∩ Ωj. 
 We may detect mergers by beginning at a 
particular time step where the number of grid elements in 
Ωi ∩ Ωj is zero and iteratively checking the area on a 
coarse time step. When the value becomes positive, we 
backtrack to evaluate from the last zero-valued time and 
then re-evaluate on a finer grid and time step. Separation 
may be detected analogously by investigating when the 
number of points in Ωi ∩ Ωj switches from positive to 
zero. Note that this method provides an upper bound on 
merger times and a lower bound on separation times. 
 A second method is similar to the area tracking 
approach except that it uses narrow bands built outward 
from Γi, Γj. In merger detection, while the narrow bands 
remain disjoint the interfaces do not intersect. 
Furthermore, the narrow bands must intersect before the 

interfaces come into contact with each other. The 
associated opposite process will occur in visibility region 
separation. A variation of this technique, which seems to 
improve accuracy, is to build narrow bands for the sum, 
ψsum = ψi + ψj, and difference, ψdiff = ψi - ψj, level set 
functions. The sum and difference functions will approach 
each other at higher rates than ψi, ψj and will begin with 
more cushion between their respective interfaces, forcing 
the narrow bands to remain disjoint for a longer time 
before the interfaces actually first come in contact, see 
Figure 11. 
 

 
Figure 11: We see that Γi, Γj (red) are very close while 
Γsum, Γdiff (blue) remain far apart. This helps prevent the 

Narrow Bands from intersecting before a true merge 
happens. 

 
We may note that this process will necessarily provide a 
lower bound on merger times and an upper bound on 
separation times. Thus, the Narrow Band method and 
Area Tracking may be used in tandem to supply an 
accurate and refineable range for merger and separation 
times. 
 A third method detects the merger and separation 
of visibility regions by investigating the boundary of the 
level set function defined by ψsum = ψi + ψj. While 
visibility regions Ωi

-, Ωj
- are disjoint, ψsum yields a pair of 

negative valued regions that are necessarily subsets of Ωi
- 

and Ωj
-. 

 As Ωi
- and Ωj

- draw closer through time, the 
negative regions of ψsum begin expanding towards the 
future intersection point on the ψi, ψj interfaces; Γi, Γj. At 
the moment of intersection, the two disjoint negative 
regions of ψsum will also first meet at the same point as Ωi 
∩ Ωj. They cannot meet earlier since this would imply 
there exists an element outside of Ωi

-, Ωj
- where ψsum takes 

a negative value. Moreover, for all 𝑥 ∈ Ω𝑖− ∩ Ω𝑗−, we must 
necessarily have ψsum(x) < 0. 
 There is an observed topological change to the 
negative region at the time of merger for the ψsum 
function. This topological change can be detected using 



the contourc function in Matlab. Contourc returns the 
boundaries of negative regions in the form of lists, each 
occupying one cell of an array. Hence, each cell 
represents an independent connected component of the 
ψsum negative region. When the number of cell drops from 
2 to 1, there has been a merger of two previously disjoint 
negative regions of ψsum implying Ωi

- and Ωj
- have come 

into contact. Similarly, separation of intersecting visibility 
regions is detected by increases in the number of cells. 
An illustration of the underlying topological change may 
be found in Figure 12. 
 

 
Figure 12: Diagrams of the ψsum function (in blue) close 

to merger time. 
 
 While the methods have been addressed and 
conceived with pairwise satellite configurations in mind, 
the aforementioned methods can easily be extended to any 
size satellite constellation. We simply define a symmetric 
matrix, with each entry (i,j) corresponding to the relevant 
information about satellites i,j. This matrix can be 
generated alongside with the visibility data with little 
extra computation, giving us information about the 
constellation at each point in time. 
 

CONCLUSIONS 
 
This paper is a first work in applying state of the art Level 
Set techniques to the evaluation and visualization of 
multi-Global Navigation Satellite Systems coverage. A 
static level set approach to visualization and Dilution of 
Precision was implemented and evaluated along with 
several optimization techniques to reduce computational 
expense. Additionally, two implementations of a dynamic 
level set method for satellite visibility were implemented, 
one utilizing a Semi-Lagrangian evolution and the other 
making use of an ENO finite difference method. Analysis 
of these methods suggested that the static approach is 
superior to both dynamic approaches in terms of 

efficiency, grid scaling, iteration scaling, and ease of 
implementation. A dynamic approach for calculating 
DOP was investigated and does not seem to be a strong 
candidate in terms of ease of implementation and 
computational efficiency. In addition to displays of 
visibility zones and DOP values, the static level set 
approach has shown promise as a tool for tracking the 
locations and times of merging and separation events of 
visibility zones.   
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